- Best
Available
Copy

AD-786 721

COPILOT A MULTIPLE PROCESS APPROACH
TO INTERACTIVE PROGRAMMING SYSTEMS

Daniel Carl Swinehart

Stanford University

Prepared for:

Advanced Research Projects Agency

July 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

e

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMGC AIM-230 :

STAN-CS-74 - 412

COPILOT A MULTIPLE PROCESS APPROACH TO
INTERACTIVE PROGRAMMING SYSTEMS

BY
DANIEL CARL SWINEHART

AD786721

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORCER NO. 457

JULY 1974

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

5 ST,
@0 JUN;, X MION ST i mee
VR ———— N STATART A
g&/ 2L APPfovod fo i ———
\ T pulb-
dal -p o i uge;
g ‘,fi"" w L] UI.I.I.Lm"”
.:I o HI - .‘I | =4 | ——-—q_____________‘_--'-
A i o
.':';I_ . N .} . .‘_:..
%‘.. ?" . IA)-:
P AT T

“TNATIONAL TECHNICA
| INFORMATION SERVICE zig
U S Department of Commerce
Springheld VA 22151

o
i

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

%
3,

REPCRT DOCUMENTATION PAGE

READ INSTRUCTIONS

7. REPORT NUMBER _
STAN=-CS=T4=L412

2. GC /T ACCESSION NO.

BEFORE COMPLETING FORM
3. RECIPIENT'S GATALOG NUMBER

4. TITLE (and Subtitle)
COPILOT: A MULTIPLE PROCESS APPROACH IO
INTERACTIVE PROGRAMMING SYSTHMS

5. TYPE OF REPORT & PERIOD CCVERED

technical, July 1974

6. PERFORMING ORG. REPORT NUMEER

STAN-T5-74-412

7. AUTHOR(S)

Daniel ¢, Swinehart

3. CONTRACT OR GRANT NUMBER(s)

5D=183

9. PERFORMING ORGANIZAT.ON NAME AND ADDRESS
Stanford Jniversity
Computer Science Dept.
Stanford, California 94305

10. PROGRAM ELEMENT PROJECT, TASK
AREA & WORK UNIT NUMBERS

ARPA ORDER HO. 457

11. CONTROLLING OFFICE NAME AND ADDRESS
ARPA/IPT, Attn: Stephen D. Crocker
1400 Wilson Blvd., Arlington, Va. 22209

12. REPORT DATE

July 197k

13. NUMBER OF PAGCS

214

8. MONITORING AGENCY NAME & ADDRESS(If difterent from Controlling Office)
ONR Representative: Philip Surra
Durand Aeronautics Bldg., Rm. 165
Stanford University
Stanford, Ca. 94305

15. SECURITY CL ASS. fof this report)

CN DOWNGRADING

6. DISTRIBUTION STATEMENT (of this Report)

releasable without limitations on dissemination.

17. DISTRIBUTION STATEMENT (of the absatrat sntered in Block 20, if different from Report 1
i
S - R e e
8 SuPPBLEMENT ARY NOTES !
S S S R R S e : i
19 KEy wORDS (Continue on rvorse side il necessary and identio lock numYer) t
!
'
1
!
/
v
30 ABETRACT /Continun an roverse side !f necessary and identify by block o)
An cxperimental interactive tem, COPILOT, !
- ' . - }
vehicle for tecting and describing method: i i
. * i
facilities to an interactive lanjuage enviromm . |
COPTILOT allows the uger Lo ¢ te, modi Sy p
programs written in an Algol-] ike lancuage, A) =
Althoupgh COPILOT is c r=hased, y | {
be applied to an inter them,
ntral to the dealgn is the uge of CRT displa 5
s ; A
DD(""_’ 1473 EDITION OF 1 NOY 65 16 OBSOLE T ¢
. z e
i AR AT PAGE Wher Dara Entersd

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY JULY 1074 '
MEMO AIM.220 :

COMPUTER SCIENCE DEPARTMENT REPORT
STAN-CS-74-412

COPILOT: A MULTIPLE PROCESS APPROACH TO
INTERACTIVE PROGRAMMING SYSTEMS

e e M v TR .

by
Daniel Carl Swinehart

e

ABSTRACT: An expenimental interactive system, CGPILOT, 1s used as the conciete
vehicle for testing and describing methods for adding multiple processing facihities to an
mnteractive language enviror.ment.

COPILOT allows the user to create, modify, nvestigate, and control programs written 1
an Algnl-like language, augmented for multiple processing. Although COPILOT i<
compiler-based, many of our solutions could also be applied to an terpretive system.

Central to the design 1s the use of CRT displays to present progranis, program data, anl 1
system status. T his continnous display of information in context allows the user to retain
comprehension of complex program environments, and to indicate the environments to 1w
affected by his commands.

COPILOT uses the muluple processing facihtes ta ats advantage to achieve a "ne.- 1
preemptive” kind of interactive control. The nser's terminal 1s continuously available 1oy
tomnands of any kind: program editimg, varnible anquuny, progiam contiol, o,
melependent of the execution state of the pocesses he as controlling. No jrrocess .y
mmilarerally gam posiessian of the user's mpnt; the user retans control at all times

-

—

The emphasis thronghout 15 on improving the characteristics of the interface between the
user and the system.

S

Thus 1esearch was supported in part by the Advanced Research Projects Agency of the Office
of Defense under Contract No. $D-183.

The views and conclusions in this document are those of the author and should not 1w
mterpreted as necessarily representing the official pohares, either expressed or imphed, of the

Advanced Research Projects Agency or the US. Government.

Reproduced in the USA. Available from the National Techmical Information Service,

Springfield, Virgna 22151,
Reproduced from
best available copy.

\§ i

ACKNOWLEDGMENTS

I would like to express special appreciation to my dissertation adviser, Professor Jerry
Feldman, for his guidance, and for his unfailing confidence in me, even when my own

was waning. | am indebted to Dr. Jim Mitchell, who offrred immeasurable assistance

with the technical problems, through many conversations and several thorough
readings. Professor Robert Floyd contributed helpful, detailed suggestions for

improving the style and clarity of this work, as well as several key ideas.

1 would like particularly to thank these colleagues who read the driufts, even though
they didn't have to: Alan Kay, Jim Low, Andy Moorer, Hanan Sanet, Dave Smith,
Bot Sproull, Larry Tesler, and Russell Taylor.

The publication of this document would not have been possible without the support of
the Stanford Artificial Intelligence Laboratory; nor could I have done without the aid
of Larry Tesler, who provided the publication system, and Brian Harvey, who helped

me make it work.

My deepest gratitude is reserved for my wife, Ann, who always understood why I was

gone, and who will have to put up with me now that I am back.

ii

TABLE OF CONTENTS

chapter

I INTRODUCTION

LA THE PROBLEM

I.LB COPILOT

I.C A BRIEF OUTLINE

HUMAN INTERACTIVE CHARACTERISTICS
2.A THE BEHAVIOR MATCH
2.B SCOPE OF APPLICATION

2.C SPECIFIC ATTRIBUTES
Multiple Activities
Single Language
Non-Preé¢mption
Response Time
Minimal (output) Modes
Maximum (input) Context
Access to Information

Non-symbolic operations

2.0 THE BEHAVIOR MATCH REVISITED

3 ASURVEY OF REPRESENTATIVE IHTERACTIVE PROGRAMMING SYSTEMS

3A BATCH COMPUTING SYSTEMS 16

3.B EARLY INTERACTIVE SYSTEMS (FSA/IPS) 17
Attribute Analysis 20
Representative Systems 21

3.C EARLY DEDICATED-LANGUAGE SYSTEMS(FSA/IPS) 21
Attribute Analysis 23
Representative Systems 23

3D REDUCED MODE SYSTEMS (FSA/IPS/RED) 23
Attribute Analysis 2
Representative Systems 26

3. E NESTED USER SYSTEMS (UPDA/IPS) 27
Attribute Analysis 30
Representative Systems 30

3F ADVANCED IPS SYSTEMS 31
BBN LISP 3
SLICE 32
ECL 33
FLEX 33
FLEX Attribute Analysis 34

3.G ATTRIBUTE SUMMARY 16

4 DESIGN OF COPILOT

4.A ACHIEVING THE BEHAVIOR MATCH 37
Use of Multiple Processes 3%
Use of Displays a8
Single Language 40

Abbreviation 40

4.B ADDITIONAL DESIGN DECISIONS
Compiler-Oriented 42
Static Block Structure 43
Emphasis on Large Systems 44

No Automatic Program Composition 45

4.C AN OVERVIEW OF THE COPILOT SYSTEM 45
The Environment 46
Basic Dialogue 51
A glimpse of Non-preémption 57

4D ATTRIBUTE ANALYSIS OF COPILOT 65

5 THE COPILOT SYSTEM: A USER-LEVEL DESCRIPTION

| , 5A BALIC SYSTEM STRUCTURE TERMINOLOGY 67
Screens 68

Regions 68

Scenes 69

Scene Types 69

5B CONTEXT SCENES AS EXTERNAL INFORMATION STRUCTURES 70

Informatton Structure Models 70

The Contour Model 70

The COPILOT Context Scenes 73

The Snapshot Requirement 73

COPILOT Context Scene Types 73

5C PROGRAM SCENES — THE PROGRAM COMPONENT

The MISLE Language

The Basic Featur<s of MISLE
Semantics of Extensions
Processes

Special Features

Program Scene Organization

The Instruction Point Portion of the Control Component

D DATA SCENES — THE STATIC DATA COMPONENT

Data Language Syntax

Semantics, Pragmatics

Data Scene Organization

The Data Language as an Input Facility

The Environment Point Portion of the Control Component

5E DYNAMIC SCENES — THE DYNAMIC DATA COMPONENT

T he Context Point

Adequacy of Scenes as External Information Structures

5F STAT SCENE — PROCESS STATUS

5G USER SCENES

5H REGIONS

Regions for Data Scenes — Special Problems and Provisions

6 THE CONTROL ALGORITHM

6.A SYSTEM STRUCTURE

The UCP — User Control Process

Crucial Primitives

vii

74
74
75
77
717
79
80
83

87

88

88

89

91

al
92

8 8 ¥

6.B THE USER LOOP
Algorithm A — Basic
Algorithm B — the Expand Routine
Algorithm C — Using the UCP
Algorithm D — Selective Interpretation

6.C THE POST PROCESS

Display of Users’ Scenes

7 COPILOT TERMINAL PRIMITIVES

7.A USER-ACCESSIBLE STRUCTURES

Access Primitives

7B GLOBAL STRUCTURE VARIABLES

7.C THE COPILOT TERMINAL PRIMITIVES

Notation

7.0 SEMANTICS OF SPECIAL STATEMENTS
Variable Query (Data Display)
Breakpoints

Temporary Statements

7E CONCLUSIONS

8 IMPLEMENTATION CONSIDERATIONS

8A TIERS
Tier Equivalence
Inter-Tier Connections
Tier Fidelity

Tiers 1n other Systems

8.B SCENE-TIER RELATIONSHIP

Permanent Scene Representation

8.C COPILOT TIERS
Text Tier
Token Tier
Tree Tier
The Symbol Table
Other Trees
Code Tier

Synchrofization

8D SELECTIVE EFFICIENCY
Space Efficiency .

8.E PARSING AND COMPILING
Parsing Methods
Detection of Increments
Timing of Parse Events
Process Structure
The Parse Process
Compiling: When and How
Mocifying Active Code

Compiling Temporary Statements

9 SHORT SUBJECTS

9.A ADDITIONAL COPILOT SUBJECTS

User Programs in the System Environment— Assistant Procedures

Display of (unnamtd) Expressions

Operations on the UCP Scene

151
152

156
156
157
159
160
161
162
163
164

165
165
166
167

9.B PROBLEMS
A UCP Scene Problem
Type Ahead Problems
Data Scene Flickering
Data Monitoring

Restoration of Active Context

9.C EXTENSIONS
Environment Modification by DYNA Scene Editing
Scene Branching
Modifying the User Loop
Display of Structured Data
' Error Messages
Text Scene Monitoring
Program Communication
A Final Modification to the User Loop

9D SUMMARY

APPENDIX A SYNTAX CONVENTIOMS

APPENDIX B ASSOCIATIVE FACILITIES (LEAP) OF THE SAIL LANGUAGE

BIBLIOGRAPHY

169
169
169
170
171
172

173
173
174
178
178
181
181
183
184

186

187

189

194

3

ey |

gressy gessy geeey

Rapioe |

2]

Toamuy

w4y

=

By

FIGURES

figure page

2-1 Thoughts to Action

31 FSA/IS Behavior of DEC TOPS-10 Executive
3.2 FSA/IPS Behavior of BASIC Terminal Interface
33 FSA/IPS/RED Behavior of JOSS Terminal Interface
3.4 DPDA/IPS Behavior of LCC Terminal Interface
4-1 Typical COPILOT Scenes and Regions (screen I)
4-2 Typical COPILOT Scenes and Regions (screen 2)
4-3 The Stanford Al Project Keyboard

4-4 Simple Editing and Execution Control (part 1)
4.5 Simple Editing and Execution Control (part 2)
4-6 Controt of Muluple Processes (part 1)

4-7 Control of Multiple Processes (part 2)

4-8 Control of Multiple Processes (part 3)

4-9 Non-Preémptive Operation {part 1)

4-10 Non-Preémpiive QOperation (part 2)

4-11 Non-Preémptive Operation (part 3)

5-1 The Contour Model Representation for an Algorithm
5.2 PROG Scene Linkage

6-1 Global COPILOT Structure

8-1 (Inadequate) View of Scene/Tier Structures

8.2 Interconnected COPILOT Scenes

8-3 Overall View of COPILOT Tier Structures (part I)

8-4 Overall View of COPILOT Tier Structures (part 2)

8-5 COPILOT Program Text and Token Tiers

8-6 COPILOT Program Tree Tier

8-7 COPILOT Symbol Table Organization

8-8 COPILOT Program and Data Code T'ers

8-9 Selective Connectivity

8-10 Proposed Memory Organization for COPILOT Implemented in MULTICS
8-11 Proposed Memory Organization for COPILO™ Impiemented 1n TENEX
8-12 Additional Token Tier Structure to Record Source Changes

Xi

4

User's View of Scene Branching

Efficient Scene Branch Implementation (Token, Tree)
Efficient Scene Branch Implementation (Code)
Possible Scene for Displaying Array Sections

Xii

TABLES

i table page

i.

§ 31 Behavior Match Attribute Summary %6
4.1 Commands Used in Chapter 4 Examples 53
5-1 Display Terminology 68
5-2 COPILOT Process Coutrol Primitives 78
5-3 Copi'ot Process Execution States 90
6-1 Shortcomings of User Loop Algorithm A 99
7-1 Structure Access (conversion) Priinitives 107
7-2 Global IPS Structure Variables 108
7-3 COPILOT Command Notation Conventions 110

|
:

Xiii

i
i
I
i
i
I
I
i
I
1
I
i
f
|
1
I
i
1
=

#
-

ABSTRACT

The addition of multiple processing facilities to a language used in an interactive computing
environment requires new techniques. This dissertation presents one approach, emphasizing

the characteristics of the interface betwse~, the user and the system.

We have designed an experimental interactive programming system, COPILOT, as the
concrete vehicle for testing and describing our methods. COPILOT allows the user to create,
modify, investigate, and control programs written in an Algol-like language, which has beei.
augmented with facilities for multiple processing. Although COPILOT is compiler-based,

many of our solutions could also be applied to an interpretive system.

Central to the design is the use of CRT displays to present programs, program data, and
system status. This continuous display of information in context allows the user to retain
comprehension of complex program environments, and to indicate the environments to be

affected by his commands.

COPILOT uses the multiple processing facilities to its advantage to achieve a kind of
interactive control which we have termed "non-preémptive”. The user’s terminal is
continuously available for commands of any kind: program editing, variable inquiry,
program control, etc, independent of the execution state of the processes he is controlling.
No process may unilaterally gain possession of the user’s input; the user retains control at all

times.

Commands in COPILOT are expressed as statements in the programming language. This
single language policy adds consistency to the system, and permits the user to construct
procedures for the execution of repetitive or complex command sequences. An abbreviation

facility is provided for the most common terminal operations, for convenience and speed.

We have attempted in this thesis to extend the facilities of interactive programming systems
in response to developments in language design and information display technology. The
resultant system provides an interface which, we think, is better matched to the interactive

needs of its user than are its predecessors.

Xiv

Baog oo

bl b’ P Skt

4 GEBR GEB o 0N O U S b i N e W

CHAPTER |
INTRODUCTION

Interactive, or conversational, computing owes its existence to the development of
multiprogramming, or multiple processing, facilities. The scaicity and expense of
computing equipment prevented direct, convenient user interaction with the programs he
wrote until a way was found for several people io share the resources of a computer system

simultaneously.

A process, as we will use it, is "an activity comprised of a time-ordered sequence of actions”
[56). The behavior of a process does not deperd on the activity of other processes— except,
perhaps, for the time and other resources it requires to execute— unless such interaction is
intended. We may therciore treat a process as if it had sole use of its own processor
(computer or other active agent). Processes may communicate with each other, through

messages or shared data, or they may operate independently.

This multiple process activity can be simulated by a single processor, under control of the
appropriate operating system. In such a multiprogramming system, use of the processor
(and other resources) is allocated among the competing processes, providing for each a virtual
processor somewhat slower than the real one. A time sharing system is a multiprogramming
system to which terminal devices (eg, teletypes or display terminals) have been connected,

allowing users to communicate directly with active processes within the system.

Joss [7), Basic [29), LCC [45), APL [26), and BBN-Lisp (53] are examples of
language systems which are designed to operate in a time shai2d environment: they are all
Interactive Programming Systems (IPSs). (x) They all allow a user to create a program "on
line", to execute it, examine its state, and modify its definition (to "debug” it); and to supply it
with requested data. In the current versions of these systems, the system algorithms and data,

along with those created by the user, form a single process within the operating system.

......................................

(%) We will examine these and other notable Interactive Programming Systems in Chapter 3.
1

TR

ILA. THE PROBLEM

A time sharing system can use process structures to provide a totally independent operating
environment for each of its users. However, when processes are allowed to communicate and
to codperate with each other, they can become a useful facility for the performance of a
single project. The Simula 67 document [14] contains several simple examples of
cotperating processes. More recently, other operating systems and language systems have

begun providing their users direct access to multiple processing facilities.

Inherent 1n an Interactive Programming Systen, design 1s a specification of the role the user
plays in its operation: the appearance of the interiuce between the user and the system. The
more sophisticated =7 the IPSs mentioned above (those which impiement the more powerful
and complex langua _es) define a user role which cannot easily be extended to handle the
multple simultaneous control and data environments of a language system which supports

multiple processes. We will present arguments to support this contention.

In this dissertation we will address the problem of building Interactive Programming Systems
which can contend with multiple procesting environments. Instead of treating this endeavor
as a burden, we will look for ways to use these facilities to improve the performance of the

system, and of the user.

1.B. COPILOT

The bulk of this thesis 1s a description of an experimental IPS, COPILOT, which we have

designed as theXoncrete vehicle for testing and describing our methods. COPILOT allows

the user to create nodify, investigate, and control programs written in an Algol-like language,

which has been augment.d with facilities for muluple processing. Although COPILOT s

compiler-based, many of our solutions could also be applied to an interpretive system.

Central to the design is the use of CRT displays to present programs, program data, and
system status. T his continuous display of information with some associated context helps the
user to retain comprehension of complex program environments, and to indicate the

environments to be affected by his commands.

5

[

i
i
i
I
I
I
[
i
v

COPILOT uses the multiple processing facilities to its advantage, to achieve a kind of
irteractive control which we call "non-preémptive”. The user’s terminal Is continuously
available for cormmands of any kind: program editing, variable inquiry, program control, etc.,
independent of the execution state of the processes he is controlling. No process may

unilaterally gain possession of the user's input; the user retains control at all times.

Commands in COPILOT are expressed as MISLE language statements. This single
language policy adds consistency to the system, and permits the user to construct procedures
for the execution of repetitive o1 complex commard sequences. A top-leve. abbreviation

facility is provided for the most common terminal operations.

The role of the COPILOT user is that of a global observer and controller, with equal access
to all his program and data environments, sub ject only to protection restrictions imposed by
the operating system. We will demonstrate that this view is substantially different from the

more local focus provided by the typicai single process IPS.

1.C. A BRIEF OUTLINE

The early chapters of this dissertation establiz’ a basis for the study, defining our goals
based on observed needs. A survey of existing IPSs follows, provided as a basis for
comparison, and to indicate the debt we owe to our predecessors.

Chapter 4 is an overview of the COPILO™ design. After describing the basic facilities of
the system, emphasizing the achievement ci the stated goals, we present a detailed example of
system operation. The reader interested in system design may choose to read this chapter

first; the references to earlier chapters should not interfere with this procedure.

Subsequent chapters provide detailed user-level descriptions of COPILOT, giving special
attention to the facilities for multiple processing, and to our reliance on the use of display

devices to enhance these facilities.

We have limited implementation considerations to a brief chapter which concentrates on the
structures we have created for representing programs at different levels, or “Tiers", and the

means for maintaining the necessary relationships betweea Tiers.

e BT

The final chapter is a compendium of miscellaneous topics, unsolved problems, and =

-~

suggestions for further research. |
.

9
-—-1

L -
sscme b

[25

o gy

§roemonsy

tmd

o1 e

-
[a] [4 []
[V} [

2
-

CHAPTER 2
HUMAN INTERACTIVE CHARACTERISTICS

2.A. THE BEHAVIOR MATCH

An Interactive computer System (IS) is the hardware and software which allows composition,
testing, debugging, and operation of computer programs, enhancing the “ability of the user to

initiate, interrupt, and generally interject himself into the control of the system” [44). Ir

practice, an 1S consists of a user con:ole (keyboard and printer), and the set of program and
interactive features which are available to it, operating on a ciigital computer, which is
usually time-shared. An Interactive Programming System (IPS) is an IS incorporating a

single programming language for all programming and prograra control.

Most recent emphases in IPS design (t) have been on improved laaguage design, improved
debugging facilities, and on the development of “single language” systems, which extend the
programming language to include the interactive facilities. Mitchell's thesis [44), itself a
significant contribution to Interactive Programming Systems, contains as well a good survey
of the leading examples of cuirent systems. His emphasis is is on language design and on
implementation considerations (flexibility, efficiency, and portability).

The emphasis of this disseitation 1s on the user-system interface. It is our desire to provide a
convenient, pleasant, intuitive interface between the user and the IPS. We intend to do this
by providing a system whose behavior matches as closely as possible the relevant
characteristics of the people who use it. Our thesis is that such a system can measurably

increase user performance.

There is an intriguing, if not terribly accurate, metaphor to be found in electronic lore: the
"impedance match”. For maximum efficiency (minimum wasted energy), the impedance of an
output from one device must ciosely match the input impedance of any device to which it is
connected. If the impedance mismatch is too great, the connection will fajl to perform
successfully at all. We will call our IPS analogue a "Behavior Match" — a term which we

shall attempt to justify.

(1) Examples are ECL, LCC, and BBN Lisp, all of which we will discuss in the survey of Chapter
3.
5

To emphasize our conviction of the importance of this Behavior Match concept, and the

necessity for some terminology to express it, we offer these informal definitions and terms:

The Behavior of an entity is that set of processes which determine the manner in which

information can be presented to it, and 1s presented by it.

A Behavior Match has been achieved when the "behavior” of a system complements the

behavior of its user, optimizing his performance.

These definitions are clearly sub jective, containing as well enough undefined terms and vague

he e b e

semantics to preclude their use for any measurement purposes. Although we hope to clarify
these definitions somewhat in the sequel, their major purpose is to provide an intuitive basis

for discussion.

S

The Behavior Match diverges from the impedance match example in that user and system

behavior neec not be identical, or even similar; they need only be “complementary.” However,

we shall show that the similarity 1s stronger than one might expect.

At the risk of overloading the "impedance match’ analogy, let us point out one additional
similarity: the impedance match between communicating devices need only exist at the
interface between them. It is possible to design circuits which isoiate the main body of a
device from its interface, allowing it to employ impedances (and other related characteristics)
which are internally convenient. Similarly, many of the internal details of an efficient,
powerful IPS must be hidden from the user, since their functions (eg. compilation, data
conversion) are not involved in the problem-solving efforts of the user, nor are their results

(binary machine instructions, etc.) likely to be meaning{ul to him.

2.B. SCOPE OF APPLICATION

The bulk of this dissertation is dedicated to the design of system interface characteristics
which will improve the interactive behavior match between system and user. Just as the
interface characteristics one chooses for an electronic device place certain constraints on the
internal device design, our IPS interface decisions will have an effect on all aspects of system

design and implementation. However, we should not let our human engineering decisions

P NN g o v e S Of

-

\ {?

unduly reduce our range of options in such fundamental areas as: the selection of a
programming language; the choice of cxecution methods (compiled or interpreted), whether
the system is intended for the creation of large, "production” programs, or for smaller,
"Instructional” ones, or whether it is intended chiefly for novice or expert users. We hope to
show that the approaches to IPS design which we advocate apply to systems which vary

widely In these parameters.

We will present in the course of the dissertation an IPS, COPILOT, as a concrete vehicle for
discussing methods for attaining 1 good Behavior Match. Because it 15 a concrete system,
COPILOT exhibits certain choices from the above parameter spectra. Indeed, we think we
have made the more difficult, perhaps less inherently flexible choice in nearly every case.
This is true in part because of the particular needs of the environment for which we have
designed the system, in part because of a desire to demonstrate the versatihty limits of our
methods. Nevertheless, particularly in these initial chapters, we will attempt to indicate those

areas where choices can be made, and those which are heavily constrained by our solutions.

2.C. ¢PECIFIC ATTRIBUTES

We have chosen for study a set of human interactive attributes which, we believe, an IPS
should accommodate in order to achie /e a behavior match. This set of characterstics, which
follows, was derived in two ways: some are characteristics which we have observed, and
which influenced our design — a priori observations. The rest are, admittedly, a posteriori
observations, attributes we have noticed which are fortunate in light of what our methods

provide. This fact should not affect their validity.

We do not claim to have isolated all relevant interactive attributes. We have concentrated on
these behavioral aspects which relate to “process” and "information transfer”. Additionally,
these con jectures will have to stand as the opinions of the author— based on his observations
of the way he and others use interactive computer systems— used to justify and guide the
design of the COPILOT system'’s behavior.

2.Cl Multiple Activities

The activity of someone engaged in the solution of an intellectual problem can be model'ed

as a single processor executing a set of cotrdinated sequential processes (coroutines), in che

sense that:

1) He is likely to shift his attention rapidly between different “processes.” His reason for
doing this may be generated internally (eg. boredom, inspiration) or externally (the
phone rings; or perhaps the part hasn't come In yet).

2) He may retain encugh “state” informatton about an abandoned process to return to it
again in time, or he may abandon it entirely.

3) If the alternauve 1s excessive unproductive waiting, he will often turn his attention to
some unrelated sub ject (the processes need not all codperate), returning to the task at
hand when 1t 1s again possible.

4) He can carry some state information concerning a previous actuivity in.> the next, often
correlating the two 1n order to understand complex relations. After all, he s presumably
pursuing some overall goal.

5) Although we have not modelled his internal behavior as true parallel processes (we give
him credit for single-mindedness), he can make use of several concurrent external
operations (stove burners, machines, computer programs, or whatever), as long as they
do not all require constant monitoring.

6) He seldom operates very recursively, or even properly nests operations— the above
coroutine-like model ts a more accurate one than a simpler recursive model.

2.C2 Single Language

Symbolic communications between people (and between a person and his later self, for that
matter) are primarily conducted by means of natural language. The same language base is
used for all areas of endeavor, although specialized lexicons (seldom specialized grammars)

form dialects for specific topics. All necessary symbolic activities are possible in a natural

language.

For efficiency and brevity, people have added to their communication abilities in two ma jor

ways:

1) through formal languages (eg. mathematics) which, though not contained in the base
language, nonetheless have a (usually cumbersome) mapping into it.

= ==

Y -

2) through acronyms, abbreviations, and possibly non-grammatical collogquialisms, often

understood by only a small segment of thie population (“far out!™). These artifacts clearly
m2p (though not always precisely) into grammatical forms in the base language.

Providing good symbolic communication between the user and his system wii. be a major
goal of tlus work. We believe that an iPS with a single input language, encompassing all
system commands, can enhance this communicaiion. We share an emphasis on the

importance of the single language idea with most IPS designers.

2.C3 Non-Preémption

A request for one's services is not always granted instantly. In fact, it is sometimes not
granted at all. At any rate, having noticed such a request, one may respond to it
immediately, queue it temporarily until some other task is comp'ete, or ignore it entirely. He
is not automatically preémpted by a "service request”, he can continue what he is doing, or

go on to something else entirely, nor must he take care of things in a fixed order.

This non-preémptive pattern is often thwarted at the user terminal connected to a modern

IPS. Much of our attention will be devoted to correcting the situation.

2.C4 Respouse Time

In contrast, when one reques's a service, he would liie it to be handled at once. We would
like to distinguish between the time required to complete a request, which we call completion
time, and a potentially different interval, which we call response time: the time delay, after
submission one request, ural that request 1s acknowledged, and another may be submitted.
If there 1s but one agent for execution of requests, these two quantities will probably be the
same. However, in an environment which supports multiple activities, successive requests
may call for the initiation of concurrent activities, or they may terminate previous ones. If
such a<tivities are possible, then, in order to make maximum use of the concurrent facilities,
the response time should be short, independent of the completion time. (In our experience,
this time should be short compared to the time required to make the request, and should
seldom exceed one or two seconds) Miller {4i) has studied computer system response,
determining empirically, for a variety of situations, what kinds of delays people will tolerate.

These times range from a second or two, in highly interactive situations, to fifteen seconds or

more for complex requests. Miller's report does not make our distinction between completion
time and response time. However, in most of the situations he cites in which people will

tolerate only short delays, it is rapid response which they seem to be seeking.

Simon, in [51), studied a related time interval, which he called the "minimum human
response time”. This is the smallest “time shce” which one can efficiently use to work on a
task, particularly in .i.e context of waiting for some possibly unrelated activity to complete.
In Simon's experience, this time is approximately ten minutes. We do not dispute it, kuat we
do believe that the "minimum human response time" could be reduced, if it were easizr to
establish the context necessary to switch to a new task. In a computing environment, this

requires a system which 1s both non-preémptive and responsive.

To summarize, people want to schedule requests for their services (output), but to obtain
rapid aitenticn to their own requests (input). This double standard is not always possible in

dealings with other people, but we can try to optimize it in an IPS.

2.C5 Minimal (output) Modes

This topic introduces another input/output double standard. People are capable of
understanding stimuli which are context-sensitive: whose meaning depends on the
environment, or context, in which they are presented. English itself is internally context-
sensitive, although normally only in a quite localized fashion- paragraphs can generally

stand alone.

In general, we think it is desirable to reduce the context-sensitivity of what one must say
(output) by reducing the number of "states”, or “modes’, which impose different
interpretations on his communications. The single-language criterion also aids us here: a
sentence, especially one intended to convey information unambiguously, should always "mean”
the same thing. This cannot be true if disjoint (or even worse, partially disjoint) languages
are provided for different purposes, since in the latter case a "mode” must be established to

determine which language to look for.

We do not mean to imply that the same results will obtain, no matter what the situation (or
state), when a yiven utterance is uttered, or when a given command is typed. There are

environmental conditions which influence the interpretation of communications. This context

1s usually implicit, however, and need not be included in the message.
10

|
|

We do not even intend that every statement be meaningful in every instance. Clearly, there
are sentences in nearly any language which are senseless, impossible, or merely silly under
some conditions. However, normally one can at least understand such a sentence, to the
extent that he can respond that it is senseless, silly, or impossible— and why. We would like

to preserve this behavior

We will, therefore, require of our non-preémptive. single language IPS, that it must allow a
user to express anything in that language, at any time— even if it is meaningless in context—

a system without excessive "modes”.

2.C6 Maximum (input) Context

While one prefers to supply as little explicit contextual information as possible when
conveying information (output), one absorbs information (input) most readily when the
environment in which it i1s presented is as completely described as possible. The more one
knows about a situation, the more capable he is of handling his part in it Our goal should
be to provide as rich a context as possible, without including irrelevant information which
could obscure understanding. Further, it 15 best if this information is continually present,

continually up to date.

When 1t is possible, we think that contextual information is best presented visually. This
sort of presentation can be made to satisfy the "continuously accurate” requirement, without
fliooding our sensory channeis— particularly because visual input also satisfies our non-
preémptive requirement— one need not look at everything all the ume, and in fact can select

what to look at, and when to look at it.

2.C7 Access to Information

This topic 15 closely related 1o the previous one, which requires that the available
information be presented as complotely and coherently as postible. Now we wish o require,
in addition, that as much information as possible be available (accessible). One is clearly
more able to deal with a situation or cbject when all its components are accessible (to see and,

hopefully, to change} than when he :nust treat it as a "black box" (or perhaps "gray box").

2.C8 Non-symbolic operations

Most of the topics we have discussed have dealt with symbolic terms: with language, its uses
and effects. But a remarkable number of things people do are not (at least at the conscious
"interface”) expressed symbolically at all; they are instead "manipulative” activities. We affect

things directly by moving them; we sense them directly by touch, sight or smell.

As an example, after one has become experienced at driving a car, he is seldom aware of
turning the wheel or manipulating pedals; instead, he turns the car, speeds up, or slows
down- another example of levels of internal mapping which involve intermediartes at other
than conscious levels. Perhaps a better example is the playing of a musical instrument: one
does not (except when learning something difficult) think in terms of plucking strings,
pushing keys, or blowing air. He thinks in terms of producing notes, or even melodic

phrases, of the desired pitches, amplitudes, durations, and tonal quality.

Exaniples of these operations for a computer terminal might be functions performed by a
single keystroke, perhaps qualified with “control key" modification, or by hght pens. function
kevboards, etc. The conscious mind 1s aware only of their effect. This feeling applies
especially to those operations which have an immediate and visible effect— for instance, the

movement of cursors or the deletion or movement of text on a display screen.

What we are advocating here is that the way in which such repetitive operations have to be
performed be made simple enough thit one thinks of them {(while doing them) only in terms
of their effect. In this way they tend to lose any symbolic meaning and to become practically

bodily extensions.

Having made the distinction betwzen symbolic and "manipulative” operations, we would like
to soften it somewhat. Although we do not normally do it, we can describe nearly any action
in words: there is a way to map a given action into an “equivalent” symbolic form. We will

find this duality very useful in the sequel.

12

i b meaeh S

W

9D. THE BEHAVIOR MATCH REVISITED

’«Wave attempted in the preceding section to indicate some characteristics of the IPS user
*_which the TPS must "complement” to achieve an acceptable "Behavior Match". Before we
proceed to an analysis of the success of previous systems in this regard, we should attempt to

clarify what we mean by "complementary” behavior (recall the definition of Behavior Match

in Section 2.A).

Whatever the means of communization, the user does not really "do” any of the things he
requests: the computer does them, under the control of the interface routines of the IPS.
Thus before he can communicate a message to his system, he must translate that (hought,
using his own internal model of this interface. into the series of symbols which will

accomplish the transmission.

This internal model must adequately represent the real thing, given the low tolerance of most

language systems for syntactic errors (}). In this sense the Behavior of model and system
must be quite similar; i.e., their Behavior must match precisely. What we wish to achieve, in

these terms, is a system which allows natural, intuitive, and convenient translation from the

original thought to the model.

P Gd B B i o

(1) Teitelman's DWIM system for BBN LISP [53] (see Section 3.F) is intended to reduce the
necessity for such precision by detecting and correcting simple errors (mismatches). We have
not treated error detection, correction, or minimization in this treatise, although in Section
9.C5 we have attempted to indicate how our non-preémptive methods can be used to soften
the effect of errors.

13

HOLVW HOIAVHIE ¥04 LIN3ITVAIND3 38 1SN

NOILOV | 3OV4HILNI SINOYLS uu«uu_mmm_._wz_ L NOILOV mu._mmwuoma
[W31SA ViIN3IN
0381530 [~ "ggNywmoo | W3LSAS AN 40 1300W | G3¥IS30 | NMONMINN

£
2
Ll
L4
<
°
L
[
Ll
-
s
=
°
=
-
&
[4
-
=
2
-

W31SAS 3OV4H3ILNI NOS¥3d

CHAPTER 3
A SURVEY OF REPRESENTATIVE INTERACTIVE PROGRAMMING SYSTEMS

To the extent that designers of computer systems have considered behavior match issues, we
believe that the designs refiect the designers’ views of adequate user models: that the user
could think quite naturally in the terms necessary for modelling the system’s behavior. Just
as we have suggested above, for example, that a person “is" a pseudo-parallel processor, the
designer of one of the early systems described below might have said that a person “is" a
finite-state automaton. We see a remarkable progression in complexity from early systems to
today's IPS systems, reflecting perhaps an increased respect for the complexity of human
processes. (%) In the discussion that follows, we present several different 1S designs, each
based on a different interface behavior model. Following the description of each model is a

list of real systems which approximately fit into the category defined by the model.

3A. BATCH COMPUTING SYSTEMS

We mention these systems only for completeness. The meager control languages provided for
these systems are adequate to define the environment and resources necessary for a run, and

to specify the order of application of programs in a multi-step job To be sure, systems

exhibiting evidence of human engineering are welcome to batch users. In fact, we could profit
by applying some of the lessons learned from IPS design to the batch regime. However, there
is not much to be learned about the problem at hand from analysis of batch systems.

We include in this category systems which use terminals for so-called remote job entry (R JE),

since they are not truly interactive systems.

(x) The structure of this section is largely the resull of a conversation with J. Mitchell.
16

4 G OB N SE n N ond e Oed e ded Nd W O e NS e 0E

3.B. EARLY INTERACTIVE SYSTEMS (FSA/IPS)

The terminal interface of some early time-shared computer systems (examples of which thrive
today) provide an excellent example of what we call the FSA/IS model. Here the system is
portrayed as a sort of Finite State Automaton (FSA), which enters a multitude of states, based
on current input and previous states. These states typically fall into a much smaller set of

classes (modes), as we shall explain.

(Based on the arguments 1n the introduction to this chapter, the implication of the FSA
design is that the user, also, is fundamentally content cast in the role of a very clever FSA.
He must maintain in his head a model of the current state, along with the meaning and
legality of the commands he might issue while in each state. Given this buman model, the
FSA/IS system provides an excellent behavior match. The same sort of argument can be

made for all of the systems which follow.)

This terminal interface model, though failing many of our behavior match requirements, has

performed admirably, especially in light of the accompanying software systems (compilers,
loaders, and the like), which are typically batch-oriented, and not suited for modification to
highly interactive situations. Elements of this design exist in nearly every subsequent

interactive system, though some of the shortcomings have been overcome.

The diagram of Figure 3-1 is a simplified state transition graph for the Digital Equipment
Corp. TOPS-10 time-sharing system, written for the DecSystem-10 computer, a system we
consider typical of the FSA/IS discipline.

{(7¥D H314¥) INNILNOD

{(3d¥3S3 AODN3IOH3INI) 1V

(S30ONENS H3SN AHMVYHLIBYY)

L1X3 TVWNHON

s
.«.r_. LY w
LNdNI 90ud @V SRR sy ¥
oa‘o. 50N8d M3SN s
N
a
= 2
_ <-9ne3aq (INWN) NNY &
. . — a
]
£
¥30vol e idiald, 2
il &
| w <
| avoT <
1 Y ¢}
NIDOT 3344 o
Ll NI =
HOLIO3 3 | HOl1103 tn.:_ S33N0 3
| HOLINOW :
i &
l1Q3 _ t
: | |
1 _ _
I ALIILN 304 |
| | _
= Ad0D
[| _
I | _
., S300WeNS, Q3NI430-¥3SN “ 300N ¥3SN _ Iaon tntzu:_ 300N 3344
|

I -

To the reader already familiar with this common- organization, the interpretation of this
diagram should be particularly straightforward. The user agproaches the terminal in Free
mode (both system and user, according to our assumptions!) He (and the system) enters the

basic System mode using a restricted, and unique, Login language inierchange, then proceeds

to work.

While in System, or Monitor mode, the user communicates with the system using a verb-
argument syntax (eg, "RUN X[20,35]" or "COMPILE PTRAN"), which is interpreted
directly by the operating system. If this syntax appears elsewhere in the system (in other
modes), it is due to mimicry, not to any global design. Some of the Monitor mode commands,
rotably those requesting simple status information ("What time is it?") perform their
functions, then return immediately to Moniwor mode to await additional commands. The
more interesting commands, however, cause other programs to be mapped into main memory
and run, entering one of 1 multitude of so-called User states (in User mode), whose input
grammars depend entirely on the program implementations. From here on, the system makes
I ttle modal distinction. The user can, however, in his programs, define his own substates,

specifying differently at different times what constitutes acceptable communication.

Control passes from User mode back to Monitor mode either by program request (only
indirectly influenced by user input), or by use of the special interrupt character, CALL (or
control-C), whose function is always to stop operation of the User-mode prograrn and to

return to Monitor mode.

This (crucial) CALL feature falls short of providing the non-preémptive environment to
which we subscribe, but its existence leads us to the following interesting observation:
although the user of this system has no direct access to it, at some level of implementation— a
very low one, in this instance— a non-preémptive discipline is in effect. The system responds
in a simtlar way to each character as 1t is typed, echos it on the output device (printer or
Aisplay), analyzes it for special meaning (eg, CALL), then either arranges for the return to
System mode or dispatches the character to the process currently preémpting the terminal.
Thus, though control of it has not been granted directly to the user, the value of a non-

preémptive regime has long been implicitly recognized.

At this level, the non-preémptive discipline reduces simply to an interrupt-driven, multiple

process priority discipline. This example illuminates the intimate connection between non-

preémptive and multiple process organizations.
19

o oo ot o o

N R

In general, no simple way exists in these systems to suspend one action temporarily, in order

to perform some other (perhaps unrelated) action, then to return to the original task; mode

changes are usually destructive in that sense. More generally, little, if any, information about

previous states is retained by these systems — such memory must be provided by the user. 1

3.BI Attribute Analysis
Let us now analyze systems of this character with respect to our Behavior match attributes.
An attribute is classified as variable if it is typically absent, but could be included in a system

without altering that system’s basic category:

ik

1) Multiple activities: nonexistent or cumbersome to use.

L
b i

2) Non-preémption: poor. As we have seen, the entire design embraces the concept of
preémption of the terminal by processes implementing different modes. One must in
every instance type only what is expected at that point, or else a specific (e.g. exit or
substate-entering) or general (e.g. CALL) "escape” character to change modes.

.

3) Response time: poor. The edit/compile/ run/debug cycles typical of these systems are
long and sequential, often requiring manuzl intervention between steps to initiate the
next. No fruitful work can be done during, for example, the compile phase.

4) Mode reduction: antithetical. In such systems there is a mode for every purpose.
5) Single Language: not provided. There is generally a different language for each mode.

6) Accessibility: variable. In a computer system we desire accessibility to such things as: the
variables of the running environment (the data);, the statements or functions of the
language (the program), and, hopefully, the control structures of the system (the
interpreter).

e o o

The only global program and data variables in the TOPS-10 system are data and
program files on secondary storage. Any other data are defined and controlled by the
programs which run in User mode; the accessibility of these data is thus determined by
these programs, varying with each instance. These operating systems do not limit the
ability of their subsystems to provide good accessibility; most of the systems which we
will discuss were implemented using the facilities of general-purpose FSA/IPS systems.

A

it A}

20

7) Context: variable, typically poor. Later we shall assert that a system cannot supply the
continuous context information we advocate without display devices with rapid random-
access capabilities. There is in principle no reason that :ich contextual displays could
not be integrated into any IS. However economic considerations have legislated heavily
against their use. lronically, many batch systems have fairly good context displays for
their operators [25]

8) Non-symbolic features: variable. The manipulative operations we envision could be
provided in any IPS, regardless of category. We know of only scattered instances where
any have been provided.

3.B2 Representative Systems

The command languages of most general purpose time sharing systems fit this category. In
addition to the TOPS-10 system [10] used in this section, they include the pioneering
CTSS system at MIT [9), The Stanford Computation Center time-sharing facility (25],
as well as newer systems like TENEX [5), MULTICS [43) and ITS [17). The latter
three do possess facilities for controlling multiple processes, by explicit assignment of the user
terminal to one process at a time. Nevertheless, for the most part they behave as FSA/IS

systems.

aC. EARLY DEDICATED-LANGUAGE SYSTEMS(FSA/IPS)

This class of programming system was developed for use where the needs of the user
community did not warrant development of a general time-sharing system, or where the need
for simplicity and comprehensive diagnostic infurmation was paramount. Although, unlike
the FSA/IS systems, these qualify as IPSs (using our requirement that an IPS be built around
a single language), these systems are actually more restrictive in many ways.

The terminal state diagram for BASIC [22], which we ccnsider representative of this
system type, appears in Figure 3-2. Operation of the system alternates between the edit
phase, in which programs are created, modified, fetched and stored to secondary storage, and
the execution phase, in which the meaning of user inputs are defined by the user’s program.
The number of mode classes is not really reduced from our TOPS-10 example, but the
number of User mode states is sharply reduced, restricting the user to the single language.

21

(S300NENS ¥3ISN AMVHLIBNY)

€4
c

31nd3X3

Figure 3-2. FSA/IPS Behavior of BASIC Termminal Interface

—— e - B e

3.CI Attribute Analysis

FSA/IPS systems have about the same degree of success at meeting the behavior match

requirements that FSA/IS systems do. The one possible exception is the single language

criterion. BASIC does not even really qualify as a single language system, though, but is

simply a restricted (or dedicated) language system; there is no intersection between the syntax L

of the program editing commands and that of the statements which are edited.

3.C2 Representative Systems

BASIC and its derivatives are representative of this "compile and go” class.

3.D. REDUCED MODE SYSTEMS (FSA/IPS/RED)

These are the first truly interactive systems we have encountered. in these systems the user
can switch rapidly from program modification to partial program execution to variable value
query. They are also the first really single-language systems we have seen: statements which
implement user algorithms resemble in syntax those for modifying program text and for
controlling (starting, stopping, interrupting) execution of the algorithms. Also, in most cases,
either type of statement is legal whether executed "directly” (typed in at the terminal,
interpreted and obeyed immediately), or "indirectly” (as part of some previously created

program).

Our archetypical system of the FSA/IPS/RED type is JOSS [7). Figure 3-3 is an
approximation to the console state transition diagram for JOSS. Chiefly due to the
implementation of all functions as part of a single language, the segmentation of programs in
that language into parts and subparts (steps) which can be executed separately, and the
implementation of an interpreter for the language which can to perform these functions
incrementally, the designers were able to reduce greatly the number of modes. In JOSS,
there is the one predominant Command mode, the nearly irrelevant Free mode, and the

mode entered to accept input to the user program, on program request.

A system of this sort could presumably support any programming language. However, most
do not feature any but the simplest name scopes (static or dynamic), since the command

routine operates only at the "top level” of the system, requiring suspension of user program

23

i
L
i
i
i
]
i
i
5
i
1
I
i
i
i
i
1
{
\

execution (and perhaps loss of local context) before control returns to it. JOSS, for instance,
has only a single naming level (all variables are global). Others allow simple local
parameters to procedures. In other systens, including some LISPs [49), it is possible to
inhibit loss of local context after an error, or after an otherwise interrupted computation.
Because the nested User structure to be exhibited in the next section does not exist in these
systems, full interactive control is usually not possible in these suspended environments;

typically, only variable query and "backtrace” operations are available.

NOIL3ITdNOD

ANNILNOD

(S3lvisans SRR
¥3SN ‘8yY)

1504 904d

1NdNI 9508d

J3X3 1u8vd

S.NINILVLS JOVNONY TVNHON

1100

i__g. ||!‘l.\.1\.\|\..l|

ces 110Q330e -

WA—313730

(HOLNI3X3)

Vv CELL]

3
R
ONYWNNOD u3 3344

Figure 3-3. FSA/IPS/RED Behavior of JOSS Terminal Interface

3.D1 Attribute Analysis

1) Multiple activities: poor. The single program task may be interruptable, or even
continuable, but only trivial operations may be performed in the interim without
destroying the state of that task. Complete freedom does not necessarily exist to examine
all active data using terminal commands.

2) Non-preémption: not provided.

3) Response Time: fair. Unless the user’s program is running, preventing the system from
listening, commands are obeyed quickly (depending on system load, of course). Gaining
control can sometimes be a destructive process, however.

4) Mode-reduction: good. Unless the terminal has been preémpted for user input, nearly
any statement or command is legal whenever the system is willing to listen.

5) Single language: good. All but user-defined commands are in the same language.

6) Accessibility: moderately good. In some systems one can examine the state of any data
item, but only because the complexity of data declaration is sufficiently restricted. In
others, one is denied complete freedom to examine all active data from the terminal.

7) Context. variable. These systems do not present data continuously (do not support
displays), although they could. They therefore fall short of our context goals.

3.D2 Representative Systems

We have placed JOSS (and systems patterned after it: eg., AID [I1]), along with RUSH
(1), PL/ACME [63), QUICKTRAN ([13), and unaugmented (1) versions of some
LISPs (eg., [49)) in this category.

(1) LISP 1s seif-defining, allowing the user to write a command loop which, for the most part,
upgrades the system to the next ecategory.

26

3E. NESTED USER SYSTEMS (DPDA/IPS)

The systems we have seen so far have restricted the complexity of the programming
languages they could support. Major attributes of modern programring languages are the
naming and data allocation facilities which allow multiple recursive or parallel instances of
the data environments for procedures, and multiple use of names by scope-qualification.
Most of these facilities have been sacrificed in the IPSs we have described, because otherwise
they could not provide for the user convenient ways to “manipulate and roam around in the
information space which 1s of interest to him when it 1s of interest to him.” (3) In our terms,

they would provide inadequate accessibility.

The systems of the next category extend and modify the role of the user (or his
representative system interface, if you wish), greatly extending his ability to interact with

complex environments.

Our model system this time is LCC [45). In LCC the user is modelled as a recursively-
instantiable procedure “written” in the language supported by the IPS (see Figuie 3-4). The
system interface still interprei: input as program statements, generally executing them
consecutively, in FSA fashion. However, the means for accomplishing this are now more
explicit: an activation record for a PART'0 (or User) procedure exists on the stack, defining
the environment of the user. Each statement submitted from the terminal is treated as if it
were (had always been) the next statement 1n the User procedure. Such a system resembles at
the user interface (or models the user as) a finite state automator: with access to a push-down
stack for data and previcus state information. Such a device is known in automata theory as
a Deterministic Push-Down Automaton, or DPDA; thus our designation of this system type.
LCC is quite representative of the DPDA/IPS.

The differences between DPDA systems and other FSA systems are not striking at the “top
jevel"— while the keyboard input 1s driving the original outer-level User procedure instance.
However multiple instances of User procedure, at differen’ recursive levels, are permitted.
The running program may instantiate a User procedure cirectly, by a procedure call; or an
instance may be created synchronously (via a preset breakpoint), or asynchronously (eg., an

unexpected procedure call {47])) in response to a user-initiated “attention” signal. In any

......................................

(3) From (44]

i
i
§
|
i
I
i
I
I
I
I
1
1
[
i
i
b
i
b

case, only one User procedure may be active— responding to the keyboard— at any instant,
and then only when that User instance is the most recently entered procedure. This

automatically prevents any but the most deeply nested User procedure from being active.

Now it is possible to establish a precise interpretation for the meaning of names typed by the
user: they are interpreted in the environment of the User procedure in control, just as names
are interpreted 1n any other procedure. It is therefore possible to provide accessibility to
variables in any environment, by arranging to instantiate a User procedure which can "see”

that environment.

This arrangement still does not meet all our accessibility requirements. For instance, in any
recursive language, for a given User procedure instance there can be variables hidden from
view (using normal access methods) due to recursive instan.es of the same variable. In Algol-
like languages, the problem is worse: each instance of the User procedure must be considered
to be declared within the procedure from which it is called (or which it interrupts— it
amounts to the same thing) in order to "see” the data for that procedure. Not only is this
difficult to implement, but it also does not provide access to those active data not in the

lexical scope of any User procedure instance.

LCC does not suffer from the latter (Algol-induced) malady, but shares the former with other
systems. It solves them by providing rather clumsy (but complete) means for violating scope
restrictions, through extended names or explicit scope specification, indicating environments
of interest. We feel that some sort of scope-violation mechanism is inevitable for any IPS

which provides both a powerful enough language and an accessible enough system.

28

FREE =

ACTIVATION RECORD FOR
OUTER-LEVEL USER

ACTIVATION RECORD FOR
FIRST USER-CALLED

PROCEDURE
: eee
. /\/\/\/\A—- FSA/IPS/RED
) RETURN TO PREVIOUS

FUNCTION

N PREVIOUS

** FUNCTION
\ USER

AR FOR PROCEDURE
i, ""-—-.____..,\

/__... see

AR FOR PROCEDURE n % a0 e

" LB N

AR FOR SECOND - [=
LIZVEL USER CALL

FSA/IPS/RED

R e Ve

Figure 3.4. DPDA/IPS Behavior of LCC Terminal Interface
29

3.E1 Attribute Analysis

)

2)

3)

1)

5)

6)

Multiple activities: fair. These systems, by allowing multiple instances of User procedure
(or a similar construct), gain some of the control powers we advocate, at least allowing
the user to switch his environment of interest without destroying previous information
(losing his place). However the system still has too much of a hand in when and how
this switch is made, which leads us to the following:

Non-Preémption: poor. A breakpoint or explicit program call to the USER function
preémpts the terminal for the new instance and context. When the user gains control via
“attention”, he is the instrument of this preémption. This facility lessens the preémptive
behavior, but does not eliminate it.

Response time: moderately good. When a User procedure is active, response is good by
all our measures. During a lengthy operation (e.g., a user’s problem program execution),
a new User instance can be asynchronously instantiated, again providing good response
time, at the expense of having to remember (with some system help) to return control to
lower levels later.

Single Language, Modes: as before, good.
Accessibility: pr: sent, but impaired. In most of these systems, the complexity of the
name and allocation structures has increased slightly beyond the ability of the user

interface to accommodate it.

Context: variable.

3.E2 Representative Systems

LCC [45) and all LISPs, at least with appropriate user-provided functions, perform: as

DPDA systems. BBN Lisp [53] exhibits this organizaion and, as we shall see, surpasses it

in scme important ways. There are also elements of DPDA behavior in Kay's FLEX design

(28], upon which we also intend to elaborate, for it too exhibits major behavior match

improvements over the systems in this category. The current incarnation of the ECL System

(58], under refinement at Harvard, seems to fall into this category. We shall discuss

Mitchell's SLICE system [44] briefly, chiefly because of improvements in technique -and

human engineering attributes which we have not stressed. Other DPDA/IPS systems include
APL [26] and CCs [50])

g 3F. ADVANCED IPS SYSTEMS

In this section we will consider the salient behavior match features of recent IPS <ys.erns, or

designs, which have provided much of the guidance and inspiration for this work.

3.F1 BBN LISP

This system [53) behaves mostly as a DPDA system, with several distinct modes in its FSA

component; some of the additional modes provide function editing capabilities and special
facilities within breakpoints. Of Particular interest to us are the contributions which

Teitelman has made to BBN LISP. These facilities first appeared in his thesis, (5¢], and L
have since been presented and elaborated in [53], [55].

Teitelman shares with us the desire for a system whose behavior complements the user’s,

ailowing him to work more efficiently and effectively. His chief emphases, however, treat user

attributes which we have not addressed:

1) Errors. People make errors when they speak, write, or type. Simple typographical,
logical or spelling errors do not usually interfere with the comprehension of messages f
the recipients are also people. It is therefore irritating and diverting to be forced to
correct such simple errors in order to be understood. Most IPSs are very unforgiving of
errors.

2) Repetition. A common act is to develop, by trial and error, a method for accomplishing
something, then to apply that method again when similar situations arise.

Teitelman’s provision for the first attribute is the DWIM (for "Do What | Mean”) facility.

This constitutes a refinement of the User procedure/system interface: DWIM routines
intervene before the User procedure is called. They examine the reason for calling User
procedure, and try to handle the situation themselves (es., by correcting simple spelling
errors, or simple parenthesis blunders) In the most common configuration, DWIM simply
notifies the user of its actions and retirns to the caller with the error corrected. Only when

DWIM fails to find a solution does it invoke BBN-LISP’s User procedure analogue.

If the User can anticipate more complex errors or exceptional conditions, he can have his
program handle them by advising selected functions to take specified temporary actions

before, during, after, or in lieu of their normal operations.

3

R LT g . T | UL THPEppoTC gy e aggen g T

Koot

A SO

T T

[]

Juom—y

| 2SR |
IR

R

- e 4

It is quite often possible for the BBN LISP user to cancel the effect of an operation, even a
complicated one, using the undo command. This feature is a powerful error-correcting tool

in combination with the DWIM features.

If a user anticipates the need, he can arrange, in most IPSs, to repeat a complex sequence of
operations: he can create a macro or function to do it, then call it repeatedly. However, if he
has simply carried out this sequence of operations, he must then recreate them in order to
repeat them. BBN LISP maintains a History List of recent terminal operations, typically the
last thirty or so. One can redo one or more recent operations by referring to entries in this
list. One can also save a sequence of History entries for permanent accessibility as a Lisp
function. We have attempted to refine this facility in our system (see Section 6.A1, the UCP

Scene).

3.F2 SLICE

The system described here is the one Mitchell uses in his thesis [44) to describe his IPS
methods. His system, a derivative of LCC, shares with LCC the DPDA/FSA/RED
classification, and would submit to essentially the same attribute analysis. Its novelty lies in

its translation algorithms.

Mitchell demonstrates that there is a spectrum of possibilities between a purely interpretive
and a purely compiled system. He discusses the merits of the two approaches in terms of the
inherently conflicting qualities of fiexibility and efficiency. Flexibility is the ability to modify
program and data elements interactively, to inquire intelligently about program operation,
and to intervene in the flow of control. Efficiency in this case is a measure of the speed of
execution of the user’s program.

Mitchell supports his view that flexibility decreases while efficiency increases as one traverses
the spectrum from interpreted to compiled programs. He then describes an interpreter-based
system which illuminates his contentions. Mitchell’s system interprets the source program by
compiling and immediately executing sections of it as they are encountered, retaining the
compiled code segiments as a fortunate side-effect. By reusing the compiled segments as long
as they remain valid, he obtains a system which smoothly traverses the spectrum from
flexibility to efficiency as an algorithm is perfected, and as the frequency of program

modification decreases. The keys to his methods are the algorithms and data structures he

32

NPT T A Th

B T T L pre

developed to detect and correct segments made invalid by modifications to source statements

and declarations.

We shall have more to say about Mitchell's findings in Section 8.ES6, for we have borrowed

heavily from them in our translation methods.

3.F3 ECL

ECL is the result of reseirch begun by Wegbreit in his thesis [57] on extensible languages
for 1PSs. The current effort is a 1. ige project, directed by Wegbreit and Cheatham (581 ai
Harvard, dedicated to the creation of a software laboratory. An interpreter and eqi:valent
compiler for the ECL language, ELI, will allow operation at both euds of the
flexibility/efficiency spectrum. A major goal of ECL is application of scphisticated software
aids to the development of very large, complex systems (for instance, an automatic

programming experiment) (8], without sacrificing ultimate efficiency.

Most of the novel aspects of ECL lie in areas not directly treated in this work; efficient
extensible language design is foremost among them. In our Behavior Match terms, as we
mentioned, ECL is at present a DPDA/FSA system. We are unaware of plans for enhanced
terminal facilities at this writing. However, we believe that our methods would apply very

nicely in the ECL environment.

3.F4 FLEX

The FLEX mini-computer and extensible language system form the central subject of Kay'’s
dissertation, The Reactive Engine [28). This system (and its successors, for it is still in a
state of evolution), until now existing only in experimental versions, gives one as much power
to define and control his own language and programs as any now available, on machines of
any size. Kay has combined theories of language, software, and machine design in a

comprehensive proposal for an easily learned, personal, and very powerful system.

In the domain of our Behavior Match attributes, FLEX and its derivatives possess qualities
which we have found missing in other systems. Kay's philosophies have strongly influenced

our design.

33

1

A Ol e =4 B B B

FLENX is a display-oriented system, incorporating a graphics tablet and a special keyset for
convenient manipulative inputs, along with a standard keyboard for symbolic input. The
built-in, extensible FLEX language allows concurrent operation of multiple processes. The
full-blown system, written in FLEX (x), makes copious use of this ability, using parallel
components in the hardware to allow scanning, parsing, compiling, and execution of
programs to proceed concurrently. In this way, though a structured text representation of a
program is the only permanent (and displayable) representation of that program, acceptably
efficient execution i$ maintained. The system provides powerful display techniques, for
editing and observing the operation of programs, for displaying structured textual and
graphical data, and for "echoing” the user's input of structured data.

In our classification system, FLE> is a DPDA/IPS/RED system, whose stack environment is
extended to the stack configuration (similar to that used in the B6700 computer [47] or in

Simula implementations [14])) needed for the operation of concurrent active processes.

3.F5 FLEX Attribute Analysis

1) Multiple activities: good. The system makes use of multiple processes, and the user has
control of them, both in his programs, and directly at the terminal.

2) Minimal Modes: excellent, due to its single input language.

3) Single Language: excellent. All commands are expressible in the user-extensible
language. A few “invisible” edit commands duplicate some FLEX functions, for
convenience in editing. Like Lisp, FLEX is "homoiconic™ the executable and external
representations of programs are essentially the same.

4 Accessibility: good. All active data are accessible to the User procedure, and the user can
activate a User procedure in arbitrary active processes.

5 Context: very good. The display facilities allow presentation of user programs in
context, and observation of their operation in that context. The user is free to provide
additional context-rich displays in his programs and subsystems.

(x) We are being intentionally vague about the distinction between the hardware and software.
The machine is microcoded, essentially implementing the nucleus language 3.d the system
kernel.

34

6 Non-symbolic operations: excellent. The combination of the keyset and tablet supply
impressive manipulative tools which enhance editing and graphical operations. The
short, easy editing commands, and the ability of the user to extend his language,
supplement these tools.

7 Non-preémption: alrost provided. The recursive (and now concurrently recursive),
nested USER concept is maintained in the breakpoint and terminal interrupt structure
of FLEX. It is not made clear what happens if two processes attempt to break at once.
The user may "ride piggyback” on the program evaluator (observe its interpretation of
the execution of his program, step by step), in order to follow and control the fiow of
operations in his multiple processing environment.

Kay would not necessarily stress these points as the most important topics of his work. We
would therefore be doing him a disservice to suggest that we have captured the “essence of
FLEX" in this short repori. The Reactive Engine is a comprehensive work, which has

contributions to make to most areas of system design.

35

=

prsm—
= |

3.G. ATTRIBUTE SUMMARY

Table 3-1 is a summary of the attribute analyses for the basic system categories we have

studied. FLEX is included in a separate column, because it excels in many attributes.

Table 3-1. Behavior Match Attribute Summary

Category FSA/IS FSA/IPS FSA/IPS/RED DPDA/IPS FLEX

Attribute

Multiple Activities ? - - X v
Single Language . X v v v
Non-Preémption - X
Response time - - - X v
Minimal modes X X v
Maximum context ? ? ? v
Accessibility ? v v v
Non-symbolic ops. ? ? ? v

These systems do not support this behavior; their implementors may not
agree that such behavior is desirable.

x All or most of these systems partially support this behavior.

? This attribute is generally absent from these systems, although nothing in
their basic designs prevents its inclusior..

v These systems support this behavior.

CHAPTER 4
DESIGN OF COPILOT

In this chapter we shall use the criteria of Chapter 2 to help specify the design of our
experimental IPS, COPILOT. Here, we shall match the human traits to the corresponding
desired behavior of the system. We shall also introduce additional design decisions (choice
of language, method of interpretation, etc) with reasons for their choice, although these do
not relate directly to the behavior match topics. Finally we shall present an overview of the

COPILOT system, w'th emphasis on the ways in which it meets the design criteria.

Subsequent chapters will present the COPILOT system in more detail.

4.A. ACHIEVING THE BEHAVIOR MATCH

4.A1 Use of Multiple Processes

If one accepts our assumptions, people can monitor multiple simultaneous external activities,
and can maintain, at the conscious interface, multiple pseudo-parallel “processes”, or
"coroutines" of their own, while pursuing a task. They want to be able to schedule their own
actions independent of the order or frequency of external requests (non-preémption), but they

desire rapid response, at least by acknowledgement, to their own requests for services.

To satisfy these requirements, we must first include facilicies, in the language and operating
environment of our IPS, for the specification of multiple processes, allowing programs to
instantiate, activate, suspend and terminate "simultaneous” operations. Thomas [56] defines
a process as "an ac.'vity comprised of a time.ordered sequence of actions”. Within a
computer system, a process is usually represented by an algorithm, specifying the sequence to
perform, a collection of data elements upon which that algorithm can operate, and a pair of
indicators, or environment pointers, which together identify the current point of operation
within the algorithm, and the current active values within the process data. By alternating
among sets of environment pointer pairs, a single computer, or processor, can, in large part,
simulate the concurrent operation of more than one process. This allows the creation of the
multiple processing {or multiprogramming) environment upon which this work is predicated.

We will describe the specific COPILOT implementation in Section 5.C4.

37

Al e, '-_.1.,..-_

The use of multiple-process facilities must be extended to the operation of the IPS itself.
This, as we will show, allows us to provide the terminal user the ability to control processes
directly. More importantly, we will use the multiple process discipline to provide the
decoupling effect needed for non-preémptive control with good response time. Our process
structure comprises a high-priority User process, operating a User loop (see Section 4.C2),
to listen to the keyboard and respond to its commands, combined with a Post process to
maintain a display of the status of all processes. This allows the user's problem, or target,
programs to run in one or more target processes, undisturbed by terminal operations except
where interaction is intended. Conversely, these target processes are not allowed to disturb
(preémpt) the User process, so they cannot bother the user save by supplying status
information to the Post process. The User process replaces the recursively instantiated User

procedure of previous systems.

We also hope to show that an IPS which uses multiple process structures properly can
operate very efficiently, in its use of both time and space, particularly when the interactive

facilities 2-e not actively in use.

4.A2 Use of Displays
We have argued that, ideally, one’s statements should not be dependent on context for their
interpretation (mode-minimization), but that one finds it easier to interpret communications

when they are surrounded by appropriate contextual (environmental) information.

Applied to IPS design, this need for adequate and current context, along with the need for
rapid response, nearly eliminates the traditional hard-cbpy sequential-character computer
terminal as a feasible terminal output device. To achieve our context match, we require a
graphic display device, which we will henceforth term a display. The most common displays

today are CRT-based point, vector, or raster-scan (TV) devices.

Current display devices do not contain sufficient area and resolution to present even the
minimum information we require to operate the system. Unless and until displays are
improved, we must provide a reasonable alternative. Ameng currently possible alternatives

are:

38

o — G e— e e

1) to use multiple display screens.

2) to implement multiple virtual display screens. This is possible if the available display
hardware and software permits rapid replacement of a screen’s contents.

3) to provide a very flexible mapping of groups of lines to areas of the display screen, so
that the user or program can select the most important text "windows" at any time.

We have chosen to design COPILOT in terms of multiple display screens. It would not be
difficult to modify the design to operate in the virtual screen mode of item 2 above. The
third method would require considerable redesign; its performance under the best
implementation would, we believe, be unsatisfactory, since it would require the user to

remember too much about the complex, time-varying screen organization.

] One important attribute of a display 1s its speed, allowing it to make large amounts of
information, and therefore adequate context, continuously visible. Perhaps as important is
{ ! its two-dimensional, random-access characteristics. We must be able to select and change one
section of the screen without affecting any other section. Using these facilities we can
I partition the screen(s) into Regions at fixed positions, each devoted to a specific purpose: the
[|
| display of a portion of a program, of some program data, of system status, or of information
: P 1] generated by the user. We can use this positional constancy to our advantage in achieving
' several of our other specific goals:
| l 1) In support of our non-preémptive control, the user knows where *2 look for information
generated by various runr “.cesses, so he need not constantly focus his attention on
] the output activity of his i
L
&
2) These processes can make the user aware of important occurrences (e.g. breakpoints)
r without interfering with his current activities.
9) Due to these visual reminders and event notices, the user can increase the number cf
. simultaneous activities which he can oversee without forgetting about them or losing
] geting 8
| | track of their operation.
4
- Our goal here 1s to give the user a window into his system which is wide enough and clear
H
i} enough that there is nothing more he needs to see, and to give him tools for directly
manipulating those things he can see. He should be able to perform most necessary control
i and modification functions by pointing and editing operations (again with random access) on
'™

this visual context.

39

- - e

4.A3 Single Language

We have asserted that people communicate with each other in a single language, with lexical
extensions for special purposes. Therefore, (3 achieve our behavior match, we must provide
our user with a single language with which to communicate with our 1PS. We must give it
enough power not only to perform the user’s algorithms, but also to carry out all terminal
operations: editing, program control, variable-monitoring, etc. The User process need only
accept statements in that language m order to provide all system functions. Conversely,
because all terminal commands are elements of our language, the user can write readable
procedures whose execution he can substitute for sequences of termina; operations. If the
user's recent commands are saved, he can even create these procidures from recent

operations. This facility eliminates the need for a special "macro” provi:ion at the terminal.

(1)

Any additional representations for programs (compiled code or other interr al structures) must

be totally hidden from the user: we must at all times preserve for him th illusion that he is

operating directly in the chosen language. We we will describe methods for maintaining
"equivalent” parallel representations for programs, their data, and other infcrmation at
several structural levels. We will maintain programs, for instance, as executable machine

code, as parse trees, and 1n an intermediate “parse token” representation.

4.A4 Abbreviation

Our observations have suggested that people avoid repetitive circumiocution by developing
formal concise notations or informal colloquialisms (jargon, slang), depending on the
formality of the sub ject. It 1s usually possible to map formal notations unambiguously into
sentences in the base language. There are also tasks which people do that are manipulative

rather than symbolic in nature.

We have attempted to provide both abbreviation and manipulative control in our IPS

design. The User process, while accepting compiete base language statements (sentences) will
also accept shortened, abbreviated commands, each of which can be algorith nically expanded

into syntactically correct language forms. We have attempted to implement the most common

......................................

(1) In the TVEDIT system for the PDP-1 [48], for instance, one can give a name to a string of
command characters. He can subsequently 1ssue a command, with that name as its argument,
which will cause that sequence of commands to be executed.

40

i
I
I
d
1
|
|
|
I
i
I
0
l
I
Il
l
il
i

simple commands as single keystrokes; in this way we hope to achieve a "manipulative”

feeling for these operations in the mind of the experienced user.

Because these facilities are available, we do not need to worry too much about the length or
ungainly structure of our basic system-control statements. Most of them turn out to be simple
intrinsic ("built-in") procedures and functions, called with many parameters. The standard
abbreviations which use them typically supply all or most of the parameters by referring to
current visual context. The result 1s a simple, flexible, and well-defined command structure,

as well as a reduced number of basic primitives.

These abbreviations provide a simple macro processor, which responds to user input, and
creates syntactically correct output. We have devoted little effort to the design of this facet of
COPILOT, except to attempt to make simple operations simple to evoke, and to partition the
system so that these front-end recognition algorithms can be replaced or altered, hopefully
even by the user, without affecting the base language facilities. A good deal of relevant
research Into macro processing has appeared in the literature, and could be useful in
improving the appearance of the system. For instanice, [34] and (62] suggest possible
improvements. We do feel that the simple schemes riescribed in the sequel will suffice to

ex hibit the power of the concept.

4B. ADDITIONAL DESIGN DECISIONS

The developments of the previous section follow directly from the behavior match
requirements. As we stated in Section 2.B, there 1s sull room for a variety of systems within
this framework. This section will discuss some of these parameters, presenting the particular
selections we have made in the COPILOT implementation. To a large extent these choices
reflect the environmenrt in which this research was begun. The goal was to provide an IPS
built around a local programming system (SAIL, [52)).

However, in each of the following cases, we seem to have chosen from the more difficult end
of the spectrum of possibilities. This 1s not necessarily laudable, nor even wise. It is,
however, fortunate in the context of this document, since, if our appraisal of the relative

difficulues 1s true, we can show that our IPS methods are widely applicable

4.BlI Compiler-Oriented

The predominant form of IPS 1s built around an interpreter. In such a system, a source
program is first converted to some internal form, retaining much or all of the symbolic and
structural information of the original. This program structure then drives a system routine,

called an interpreter, whose function is to carry out the actions specified by the algorithm.

In a compiler-oriented system translation is from source program to machine code, in which
the algorithm can be executed directly on a computer. Neither the source, nor any
intermediate structures used during the translation, are needed for correct program execution

after compilation is complete.

Arguments in favor of an interpretive IPS are:

1) The interpreter is an activc agent throughout the execution process. It is therefore easy
to include in the interpretation algorithm facilities for continuous monitoring of special
conditions, dynamically set breakpoints, etc.

2) Semantic information about all program entities (variables, expressions, etc.) must be
maintained throughout execution. Interpreters usually use this to advantage,
maintaining data types and other attributes dynamicaily. This late binding reduces the
number of attributes the user must declare, and increases the flexibility of the language.

3) Since this semantic information (and other data which is of interest to the user: names,
etc) s retained anyway, most systems provide sophisticated interactive features which
put this information to good use. This kind of information is typically lost when a
program is compiled.

As we stated in Section 3.F2, Mitchell's factored interpreter methods can achieve the speed of
compiled, though not necessarily optimal, code in a basically interpretive system. With iz
loss of flexibility, we have adapted Mitchell's methods to a system which maintains 1l user
programs in compiled form, compiling changes as they are made, rather than just befors the
changed sections are executed. This allows us to avoid periodic return of control to the
interpreter to check for modified sections, which in turn enables us to approach execution
speeds competitive with batch systems. This 1s an important attribute for very large systems,
which often run for long periods before requiring any interactive operations. The
disadvantage to compiling before execution 1s that we may recompile the same section of code
many times without executing it. Under some circumstances this will significantly degrade

performance. Our method also makes it more difficult for us to accept incomplete programs.

42

i

i S g S

When they are not interacting with the user, Copilot code segments do not require the
services, nor even the presence n memory, of the IPS routines cr data; nor do they require
the presence of the higher-level program structures (eg., text strings or parse trees). With
proper memory management, this allows debugged, non-interactive programs to approach the
size efficiency of conventional batch environments, without sacrificing the interactive facilities
when they are needed. This performance is achieved at the expense of additional time and
space overhead in the IPS routines. In Section 8D we will present these “sele:tive
efficiency” methods in some detail.

4.B2 Static Block Structure

Another important design parameter for any programming system concerns the meaning of a
name n that system: its scope (lexical and dynamic range of validity), how its value is

obtained, and when this binding of name to value occurs.

None of these i1ssues has any direct bearing on our main topics of study. However the choice
we make has a large effect on the behavior of the language, and therefore on the overall

behavior of the system. It has an immense effect on the difficulty of implementing the

Ianguage In an interactive environment.

We must consider this choice in the light of our previous decision to build a compiler-based
system. Here a modification to the definition of a name can have far-reaching effects. These
changes are particularly difficult to handle incrementally, if the code compiled to gain access

to that name must also be changed; eg., if the name is bound to its access algorithm at
compile time.

Such 1s the case, for example, with the static block structure employed in Algol 60 [46], but
not with the dynamic scope rules used to access variables i LISP 1.5, where all non-local
names are bound to their values whenever they are referenced at run time. The problem is
compounded 1n Algol 60 by the static lexical scope, which tends (in practice) to distribute ine

effects of changing a global variable's declaration over a wider range than do other methods.
True to form, we have chosen to use the Algol block structure, again picking the more
difficult end of the spectrum of possibilities. Fortunately, Mitchell's incremental compilation

methods are equipped to handle this structure, and we shali use them in our design. The

43

static Algol block structure affects our ability to display program variables conveniently, as we

shall see.

4.B3 Emphasis on Large Systems -
The typical IPS is oriented towards aiding the development of the small (however complex)
program or cystem. Typical users are the beginning student of programming, and the
occasional user. They require that the system be easy to learn and use, that it be helpful, and
that it be resilient to erroneous inputs. Efficiency is usually a secondary issue. When
programs grow too large to survive economically In an interpretive environment, their
creators must abandon these highly interactive and context-rich programming systems for
more traditional batch-oriented methods. A few systems have survived the enlargement
fairly well, among them most LISP systems. The LISP user sacrifices some of the flexibility
and interactive facility of the interpreter by compiling most functicns. In exchange, he :
achieves a significant improvement in speed and size. (The user may replace a compiled

function by its interpretable equivalent in LISP, so that if he anticipates the need to interact

with a function before calling 1t. he may not suffer at all. However, there 1s a danger that a
l function which must be interpreted may be executed frequently enough to dominate

execution time).

In our experience, very large programs need comprehensive interactive methods most. Small
programs, even very complex ones, can usually be debugged with relatively unsophisticated
aids. In larger systems, troubles are often the result of “second or third order effects”. These
effects can appear, due perhaps to new kinds of inputs, in routines long thought perfected,
whose detalls may have been forgotten. Such a situation typically develops only after a
l2ngthy input sequence which would be expensive (or in real-time situations, impossible) to
reproduce. The user needs the ability to apply a wide range of interactive aids to the

problem, wherever it occurs.

Many of our COPILOT design decisions are independent of the size and complexity of the
programs we expect to handle. Where they are not, however, we have chosen in favor of
large systems. This 1s the chief reason for our emphasis on efficiency through compiled code.
It 1s the reason we segment the system so that IPS features can “retract” when idle. It is even
partially responsible for our choice of a statc block structure, since this name structure

sacrifices lers efficiency for its power than do other schemes.

14

NPT T ¥ T NP T T T T

3 =

I

We do not claim to be alone in decrying the neglect of large systems in IPS designs.
Remedying it i1s an important goal of the BBN block-compiled LISP features (53], the
ECL system at Harvard [58]), MPS and Smalltalk, being independently developed at the
Xerox Palo Alto Research Center, and Lisp70 under development at Stanford. All of them
are highly interactive systems, embodying many of the principles we support (see also Section
3F).

4.B4 No Automatic Program Composition

Most language processors place no restrictions on the assignment of language elements to text
lines. the indentation of hines, or the spacing between elements on a line. The composition,
or physical appearance, of a program strongly affects its readability. Not anly do people
disagree with cach other concerning program composition rules, but a programmer may also
vary the format he chooses from one program area to another. We have therefore chosen to
do no recomposition of user programs, but to retain the form in which they are submitted.
“This does not preclude the provision of composition tools (e.g., Prettyprint in BBN-LISP), as

optional facilities.

4.C. AN OVERVIEW OF THE COPILOT SYSTEM

The final sections of this chapter serve as an introduction to the next chapter, which is a
rather detailed presentation of our experimental IPS implementation, COPILOT (3).
COPILOT, as it appears on paper, possesses most of the traits we have advanced. The
current PDP-10 implementation falls considerably short of that, but is complete enough to
demonstrate the feasibility and utility of out recommendations. Section 9.B deals with the

aspects of COPILOT which we consider incomplete.

Our overview conc'sts of pictorial examples which should give the reader (and vicarious
user) a "feel” for the use of COPILOT. We begin with a description of what he would see

on his screens.

(1) The name is derived from Teitelman's "PILOT" -- used with permission.
45

4.Cl The Environment

We will describe the system as it might appear after a significant amount of dialogue has
taken place, taking us from the initial state to something more typical. The user faces one or
more display screens— in our implementation we require at least two. Referring to figures
4-1 and 4.2, the available display area has been segmented into several Regions, each
displaying a portion, or window, of a text Scene. (x) The configuration shown is a simple
one. This user's entire target (applications) program requires but one process. It therefore
contains at one time at most one active statement, which we will call the Instruction Point
(IP). Our user has simplified the situation by selecting for display only those few Scenes
required to understand the operation of his program, at the current IP and EP (or
Environment Point, indicating the current “record of execution”, or active data

environment). We call the current time tl.

The Region marked RPROG, available in one form or another in every IPS, is a
representation of a window of the user's program. The program is stored and displayed in

exactly the same form in which the user (or some program) created it. The context cursor
("»" character) indicates the exact location of the IP in the program, at time tl. The language

is MISLE, which claims Algol 60 as a distant ancestor.

The RDATA Region is the visible representation of the instantaneous data environment,
consisting of the names and values of selected variables at tl. The context cursor ("»") here

identifies the Environment point (EP), indicating the variables for the procedure most

recently entered.

The RDYNA region reveals the dynamic state of the computation through a graphic
representation of the process-stack configurations at time tl, while the RSTAT Region
exhibits the current execution status of all processes (including in additior. to the Target

(applications) process the User and UCP processes which instantiate the basic IPS facilities).

These four Context Scene types nearly exhaust the COPILOT repertory, although
unlimited additional user-defined Scene types are possible. A few secondary COPILOT
Scene types are described in Section 5.B5.

(%) The labels at the top of each region name the entities represented there. They take the
form <region>/<scene>(type), where the type entry is omitted if its name is the same as the
scene.

16

I
I
I
I
I
I
|
I
I
I
I
L {

RPROG/EDIT (PRDG)

BOOLEAN PROCEOURE EOIT(INTEGER CONMAND, EDIT_SCN, EDIT_LINE;
INTEGER EDIT_CHAR, A1, R2; STRING S1);
BEGIN
INTEGER SERRCH_SCENE, SERRCH_LINE, SEARCH_CHAR;
INTEGER SERRCH_CNT, TIHE®, TIHEL;

OTHER_EOIT_ROUTINES;
BOOLERN PROCEDURE SEARCH(INTEGER S_SCENE, S_LINE, S_CHAR;
STRING WHAT);
BEGIN
INTEGER SCN, LN, CHR, CHl; STRING SRCH_STR;

SEARCH_PRIMITIVES;
SCN « S_SCENE; TIMEL « SYSTEM_TIME() - TIMES;
4

SEARCH_CNT; TIHEL,
FOR LN ~ S_LINE STEP | UNTIL GETLENGTH(SCN)
00 BEGIN
» SEARCH_CNT « SERRCH_CNT + };
SRCH_STR « GET_TEXT(SCN, LN, CHR+), 999); CHR « 8;
IF (CH1-FINO_STRING (NHRT, SRCH_STR)) THEN BEGIN
SERRCH_SCN »~ SCN; SEARCN_LINE « LN;
SERRCH_CHRR +~ CHR+CHi+1; RETURN (TRUE)
ENO Comment recursive search;;
WHILE (CH1«FINO_STRING("#", SRCH_STR)' DD
IF SEARCH (F IND_SCENE (SRCH_STRI(CH1+1 TO 9991), 1, 8, WHAT)

RSTAT/STAT

ANRITING User Input
AHARITING Postevent
STEPPED

STEPPED

Figure 4-1. Typical COPILOT Scenes and Regions (screen 1)
47

e ‘
T —— RDATA/DATA \

USER.COPILDT(...);
BEGIN
TARGL. TEXTPRDG (...)}
BECIN i
TARGL.EDIT(...); ;
BEGIN .
...t SERRCH_CNT s 12 1
XX} TINEL = ‘-.s; vee}
TARG1.SEARCH#2(S_SCENE = 3, ..., WHRT = "THIS DNE");
» BEGIN
.o CHR = §7; ... !
END; i
END;
END;
END;
RDYNR/DYNR
1l 1
USER.COPILOT ---
24 34 4l
PDST.POST UCP.UCP TARGL.JEXTPRDG
}
EDIT
|
SEARCH#L
|
» SEARCHA?
4
\ ,
. 4
= J

Figure 4-2. Typical COPILOT Scenes and Regiuns (screen 2)
48

Almost any modern computer terminal keyboard and operating system interface would suffice
for a COPILOT:like system. Qurs (see Figure 4-3) can communicate with the program one
character at a time when desired, increasing the possibilities for abbreviation. These
possibilities are further multiplied by the TOP, CONTROL, and META keys. These keys,
like the alphabetic SHIFT, allow multiple-interpretation of each character. TOP selectes an
alternate character, while the remaining two simply qualify the selected basic code. We will
use “aA" for CONTROL-A, "3B" for META-B, and "eC" for CONTROL-META-C.

19

Best Available

Copy
for page 50

|
|FoRN
|

]
|-

X

! [| |
by | . | TOP | SHIFT |

| | ‘ A
JLOCK| SHIFT | TOP | 2 | x | C | V | B | N |
| | | |

| | | | | |
| NEYR | CONTROL | | CONTROL | RETA)
) | t&___| et ___J___ter |

Contrui/Snist Group

Tabut itian roap

Reproduced from
best available copy.

Figare 4.3. The S.auford Al Project Keyboard
50

P T P T P L T m—p—

Bal Wl NSl BeA e

—

| —— | .|

M’

4.C2 Basic Dialogue

The IPS must provide the routines for reading what the user types, and for invoking the
facilities of the IPS in response. We have said that the nature of these interface routines
establishes the behavior of the IPS, and thus the (interface) behavior the user must exhibit.

We are now in a position to treat the interface behavior of our system in some detail.

" We will call that routine which controls the operation of the user-IPS interface the basic

control loop, or User loop. Its existence is at least implicit in all the IPSs reviewed in Chapter
3, usually it is quite explicit, forming the central control ‘or the entire system. The basic
User loops are remarkably similar from one system to the next. When the loop gains control

(in a fashion to be described later), it performs approximately these functions:

1) Accepts one command from the keyboard.
2) Deciphers its meaning, and carries out its intent.
3) Reports the results, if necessary.

4) Returns to step 1.

An elegant example of this sort of algorithm is the top level of most LISP systems (e.g.
[(49)). This algorithm, itself expressed in LISP, can be approximately stated in the LISP
M-expression language [40] as:

L: Al};prog2(prinilevailread(]NIL]JL]
or, using the less pure PROG form

prog(}[L: printlevallread[JNIL}, golL2

Although not all IPS implementations can express 1t quite this succinctly, they all have
something like this Read-Eval-Print User loop op - ating at the command level. Though all
are similar, there are important differences betwezn these User loops. One is the nature of
the commands supplied to the 'Read’ function: in an IFS these commands are usually
st stements (S-expressions) in the single source language. The User loops of the various IPSs
can be distinguished from each other by the ways in which they are able to gain control, the

times when that is possible, and the meaning of statements for a given instance of the User

51

e

g e -

-
-

» T

procedure or process (the scope of interpretation). In general, they differ in the relationships

between the basic control routines and the remainder of the system.

To a user familiar with any of ihese systems the User loop in COPILOT will present no
immediate surprises. Commands in the form of MISLE statements are accepted sequentially
from the keyboard, and usually are carried out in incoming order. Results of user
commands, if they need to be reported, are revealed by changes in the text displayed in the
appropriate Regions of his screen. As long as the cperations to be performed are simple,
commands and actions progress alternately, as in JOSS or BBN LISP. By describing
situations designed to demonstrate the non-preémptive aspects of COPILOT we shall soon

shatter this illusion, but for the present we shall retain it.

COPILOT commands are available for editing program (and other) text, for examining
progiam data, for controlling program operation, or simply for their effect as statements (to
test program sections, or for "desk calculator” operations). Figures 4-4 and 4.5 are
continuations of the picture sequence begun in Figure 4-1, showing the effects of COPILOT
operations on the contents of the user's screens. Regions are sometimes shown in different
positions from figure to figure in these examples, to minimize the information in each figure
(in the actual system, the Regions would remain in fixed screen and line positions). A Region
is shown only when ihere is a significant change in its data. Each figure represents the state

of the Regions it show: after execution of the commands which accompany that figure.

The locus of user activity is indicated by the edit-cursor, a "A" character beneath a selected
character position in one Scene. Most of the editing primitives (EDIT_CHAR,
INSERT _LINE, etc.) use the location of the edit cursor.

The entries in the COMMANDS column are the actual character strings the user types to
perform the functions described in the examples. Entries in the EXPANDED column are the
actual MISLE statements which he could type to get the same effect. Table 4-1 briefly

describes the functions of the commands used in these examples. More complete descriptions

of these commands and their expansions appear in Chapter 7.

Table 4-1. Commands Used in Chapter 4 Examples

COMMAND MEANING

en<cr> Move the edit cursor ("A") down n lines (n is a number, and <cr>
means "carriage return”).

enaF <char> Move the edit cursor to the nth occurrence of the character <char>
following the current cursor position.

®: Move the edit cursor to the first token of the statement which begins
nearest the current cursor p-sition.

<char> Place <char> in the current edit cursor position. Replace any
character which might aiready be there.

enaD Delete n characiers.

®; Move the control cursor (instruction or environment point indicator
("»")) to the edit cursor position.

¢B Set a breakpoint (insert a BREAK statement, see below) at the
statement nearest the edit cursor.

oP Allow the process indicated by the DATA Region containing the EP
contro! cursor ("»") to proceed. This is usually used to resume a
process after a break.

eX Allow the process identified by the EP cursor to execute one
statement, identified by the IP cursor.

@S If the statement at IP contains substatements, allow the process to

continue to its first substatement. Otherwise, this command is the
same as oX.

o& <string> Execute the statement specified by <string>, in the environment
specified by the EP context cursor ("»").

o> Make visible the PROG, DATA, and DYNA Scenes corresponding to
the most recently broken process.

53

! . ®, Move the edit cursor to the control cursor position.

oM <str><cr> The string <str> is the name of new data which replaces the current
data in the Region containing the edit cursor.

eneR Move the edit cursor to the last pusition it occupied in the Region n
Regions away from the current one, where Regions are arranged in a

reasonable circular order.

— A statement containing only an expression means that that expression’s current value

should be displayed in a DATA Region (eg. "J.").

"BREAK(proc)” will cause the process named proc to suspend when it encounters the

BREAK statement.

"{ s1; 52, .. sn } sm", where 5|, etc. are statements, Is equivalent to "BEGIN sl; .. sn; sm

END". See Section 7.D3, which describes these temporary statements.

After examining these figures, it should be clear why some formi of abbreviation is desirable.
A user should not be forced to submit a "mouthful” ke "MOVE_CURSOR(..)" simply to
F reposition his edit-cursor, although the same string might be the best form (for precision and

legibility) to include in a program ("macro”) to position the cursor. Consequently, we have

caused the command “<cr>" (carriage return) to perform the same action as the
MOVE_CURSOR operation in Figure 4-4, by a mechanism explained in Section 6.B2.
In fact, the form marked COMMAND in_each of our examples is the preferred form of
direct input to our User loop: the expanded forms are always available for inclusion in

programs and for documentation.

Notice that the cata display statements of Figure 4.5 are executed for their effect on the
program, operating in the program's environment. Others operate essenually in the
environment of the system (the “interpreter”). We will show these relationships in detail in
Section 7.C8. This distinction 1s a very important one, the subject of a great deal of study

by Fisher (21] and others (for instance, Bobrow and Wegbreit in [6]).

4 eeeimmmmcccceacae- RPROG/EDIT (PROG) -ecccccccccccmcaaccannaa.. \

BOULEAN PROCEQURE EDITC(INTEGER CONMMANO, EDIT_SCN, EDIT_LINE;
INTEGER EOIT_CHAR, AL, A2; STRING S1);
BEGIN
INTEGER SERRCH_SCENE, SERRCH_LINE, SEARCH_CHAR;
INTEGER SERRCH_CNT, TINEQ, TIMEL;

DTHER EDIT_ROUTINES;
BOOLEAN PROCEDURE SEARCH (INTEGER S_SCENE, S_LINE, S_CHAR;
STRING WHAT);
BEGIN
INTEGER SCN, LN, CHR, CH1; STRING SRCH_STR;

SEARCH_PRIMITIVES;

SCN « S_SCENE; TIMEL - SYSTEM_TIMED - TIMED;
SERRCH_CNT; TIMEL;

FOR LN « S_LINE STEP | UNTIL GETLENGTH(SCN)

00 BEGIN
SEARCH _CNT - SERRCH_CNT o |;
SRCH_STR « GET_TEXT(SCN, LN, CHRel, 999); CHR « §; 1
.

IF (CH1-FIND_STRING (WMRT, SRCH_STR)) THEN BEGIN
SERRCH_SCN ~ SCN; SERRCH_LINE « LN;
SEARCH _CHAR « CHReCHlel; RETURN(TRUE)
ENO Comment recursive sedrch;;
» WHILE (CHI-FIND_STRING (2", SRCH_STR}) 00 121
IF SEARCH (FIND_SCENE (SRCH_STRICHlel TO 9991),1,8,HHAT)

g Oung Oun) Qum Pumd Gemed Pumed Pumd Pemd Bee Deed Baeel D D

.................. ROATA/OATA cccecccccmcccacamamcanan
USER.COPILOT(...);]
BEGIN
TARGL. TEXTPROG(...);
BEGIN
TARGL.EDITC...);
BEGIN
ooy SEARCH_CNT = 12;
ooy TIMEL = 4.05; ...
TARGL.SERRCHA2(S_SCENE = 3, ..., WHRT « "THIS ONE"); !
» BEGIN 4
ooy CHR = B; ... {21
ENO;
ENO;
END; /
< END; i
CONMAND EXPANDED COMMENT
: B
1 wherrs MOVE _CURSOR (CRNT _REG, 4, 8, 8, &; (1] Move the edit-cursor (4) down 4 iines, 1!
1 of; FIND_STRING (CRNT_REG,";",1); then out to the first “C" alter a ";" Q
P of C FIND_STRING(CRNT_REG,"C",I); |
' v SET_P(GET_PROCESS(EP), [2] Fove tre context cursor (»), 1agentitying ;
E EDIT_STRUCT (CRNT_REG) 1 the IP (Instruction Point) 1o the 1
| wX STEPP(GET_PROCESS(ERP), “i"); edit-cursor (oc., then erecule two
! X STEPP (GET_PROCESS (EP), “4°); stmts. The assignment 1o the B

variable CHR has changed 115 value
trom 17 in the previous diagram to
8 in this one.

Figure 4-4. Simple Editing and Execution Control (part 1)

55

A TR

P .
/ RPROG/EDIT (PROG) \

INTEGER SEARCH_SCENE, SEARCH_LINE, SEARCH_CHAR;
INTEGER SEARCH_CNT, TINE®, TIMEL;

OTHER_EOIT_ROUTINES;
BOOLEAN PROCEOURE SEARCH (INTEGER S_SCENE, S_LINE, S_CHAR;
STRING WHAT);
BEGIN
INTEGER SCN, LN, CHR, CH1; STRING SRCH_STR;

SERARCH_PRINITIVES;
SCN « S_SCENE; TIMEL « SYSTEM_TIME() - TIMEQ;
SEARCH_STR; TIMEL;
FOR LN « S_LINE STEP 1 UNTIL GETLENGTH(SCN)
00 BEGIN
SEARCH_CNT « SEARCH_CNT « 1;
SRCK_STR - GET_TEXT(SCN, LN, CHR+}, 999); CHR « §;
1F (CH1-FINO_STRING (WHRT, SRCH_STR)) THEN BEGIN
SEARCH_SCN «» SCN; SEARCH_LINE « LN;
SEARCK_CHAR « CHR+CK1+1; RETURN(TRUE)
ENO Comment recursive search;)
IF (CH1+FINO_STRING("#°, SRCK_STR)) THEN
[

» 1F SEARCH (F INO_SCENE (SRCH_STRICHl+1 TO 9991),1,8,UHAT) 131

------------------ ROATA/DATA comeevecmccmmmeccccrccaa
USER.COPILOT(...);
BEGIN
TARG1. TEXTPROG(,..);
BEGIN
TARG1.EOIT(COMMAND = 17, ...); 141
BEGIN
voo} SERRCH_CNT = 12;
..o TINEL = 4.85; ...
TARG1.SEARCH#2(S_SCENE = 3, ..., WHAT « "THIS ONE");
» BEGIN
oo CHR = 8; ...
SRCK_STR = "1S IT TH13 ONE?" 14)
ENO;
ENO,
ENO;
\ ENO;
\v
- —
CONMANO EXPANOED COMMENT
“, SET_CURSOR (GET_REGION(IP), 131 Now bring tne edit cursor to the new
GET_LINECIP), GET_COLUNN(IP), -1); context cursor (IP) position, change the
IF FNIT_CHAR (CRNT_REG, "1F",0) "WHILE® to an °"IF" (replace "HH" by °“IF°,
«300 EOIT_CHRR (CRNT_REG,NULL,-3) then delete "ERE"), and *he "DD" to "THEN".
x20F0 FIKD_STRING(CRNT_REG,"0",2) Then "step 1n" to the statement at P by
THEN EQI '_CHAR(CRNT_REG, "THEN",8) executing the (successful) test and suspending
&S STEFP (CET_PROCESS (EP), "=") at the substatement.
w&SRCH_STR; <ccr> 14) Finally, execute data-display operstions
EVAL ("SRCH_STR; ", IP,EP) to inspect (and retain in view) some
«8CONNAND ; <cr> additional vuriablesx.
EVAL ("CONNANG; ", IP,EP)

Figure 4-5. Simple Editing and Execution Control (pzrt 2)
5%

4.C3 A glimpse of Non-pre¢mption

The User-loop of COPILOT is continuously active. This means that, within second or two
(a reasonable response interval) after accepting one command, it will be ready to accept (and
act on) another. We have arranged to implement those operations which require longer
intervals as separate, lower-priority processes, in order to maintain this response. Chief

among these other processes are the user’s target (applications) processes.

Figures 4.6 through 4.8 portray a sequence which we hope will not appear too contrived.
Program-editing statements (exparded from the simple B command) first add a BREAK
(breakpointing) statemeit temporanly. Then (Figure 4-6) the oP (proceed) statement allows
processing to continue from (IP, EP) in the Target process. The breakpoint has been planted
to detect an unexpected condition, and the user knows that whether or not this condition
develops, execution will take some time. He therefore (Figure 4-7) 1ssues commands to
change some of his Regions, selecting a new Scene for view in the PROG Region and cutting

off most visual contact with the TARGI process, which continues to operate, indicating its

progress by occasional changes in the TIMEl and SEARCH_CNT variables. In this

instance the new Scene (SUBST) is a piece of code which he has just begun to compose.

|

Because the process(es) implementing the User loop algorithm operate at a high priority, his
editing commands (Figure 4-8) receive service as they come in, “stealing cycles” from his
running target, or applicaticns, process. In short, he has been able to initiate an external
operation, then to shift his locus of interest, while monitoring some aspects of the previous
operation. He has 1ssued a stream of interspersed editing, debugging, and program control
operations. He has accomplished this, we contend, with no noticeable loss of continuity, from
his standpoint. We have an IPS which satisfies our multiple-process, minimal mode, rich-

context criteria.

57

M.
2 PUREERY WL < T ROy W mpae s S T

- Gl gumg Gy Gy B B B B

s T T TN VT m— Y e e

CDNNAND

wbacr>
®e:

B
oP

RPRDG/E JIT (PRDG)

INTEGER SCN, LN, CHR, CHl; STRING SRCH_STR;

SERRCH_PRIMITIVES;
SCN « S_SCENE; TINE] « SYSTEM_TIMEC) - TINE®;
SEARCH_STR; TINEI
FDR LN « S_LINE STEP I UNTIL GETLENGTH{(SCN)
DD BEGIN
SEARCH_CNT « SEARCH_CNT + 1;
SRCH_GTR « GLT_TCXTUGCN, LN, CHR«l, 999); CHR « &;
IF (CH1-FIND_STRING (HHAT, SRCH_STR)) THEN BEGIN
SERRCH_SCN « SCN; SEARCH_LINE « LN;
SEARCH_CHAR » CHR#CHl+I; RETURN(TRUE)
END Comment recursive search;;
iF (CH1-FIND_STRING("#~, SRCH_STR)) THEN
IF SEARCH (FIND_SCENE (SRCH_STRI(CHl+1 TD 999]1),1,8,UHAT)
THEN RE TURK (TRUE)
END Comment one line;
IBRERK (TARG1) ! RETURN(FALSE);
A

END Comment Search;;
CASE CDMMAND DF BEGIN

DTHER_EDITS;
BEGIN

TINE® ~ SYSTEM_TINE(); SERRCH_CNT « 8;

RETURN (SERRCH(EDIT_SCENE, EDIT_LINE, EDIT_CHAR, S1))
END Comment search command;

STILL_DTHER_EDITS;

END Comment case;
END Comment Edit;;

RSTAT/STAT

ABAITING User Input
AURITING Postevent
STEPPED
RUNNING

EXPANDED CDMMENT

MDVE _CURSDR (CRNT_REG,4,8,8,8); [SINow “plant a breakpoint® (the temporary
STRUCT_MOVE (CPNT_REG, ": ") "BREAK(TARGI)") at & point which will
ED)T_CHAR (CRN'C_REC, " IBRERK (TRRG1)1",1); only be reached if ar error occurs, and
RCTIVATE (GET_PRDCESS(EP)); iet the process proceed.

Figure 4-6. Control of Multiple Processes (part 1)
58

A I oom m om N N e Duwd P B el D e

o

~
e RPROG/SUBST (PROG)
PROCEQURE SUBST(INTEGER S_SCENE, S_LINE, S_CHAR;
. STRING FROM, TD; INTEGER HOWMANY);
BEGIN
INTEGER TINEL, LN;
FOR LN «~ S_LINE STEP 18)
[y
- RORTA/DATA == =
USER.COPILOT(...);
BEGIN
TRRG1.TEXTPROG(...};
BEGIN
TRRG1.EQIT(CONMANG « 17, ...);
BEGIN
...3 SERRCH_CNT = 1183
.oo3 TINEL = 10.87; ...;
TARG1.SEARCHA2(S_SCENE = 3, ..., WHAT = "TH]S ONE");
BEGIN
voey CHR 2 05 ...y
SRCH_STR = "R RRNDOft SERRCH STRING"
ENO;
END;
END;
END;
-------------------- ROYNR/CALSEQ (USER) —-c-cccccccmmaa- (]
c {13 o £ Pri .
L « GETLENGTH (SCENE) returns number of lines In Scene
S « GET_TEXT(SCENE,LINE, returns 2 selected substring, not
STRRTCHR, ENDCHR) to exceed remaining length of line.
B ~ FIND_STRING("FOR", "IN™) TRUE 1t FOR n IN, FALSE oterwise.
CONMANG EXPRNDED COMMENT
e2uR EOIT_REGION(NEXT_REGION(CRNT_REG,2), [6)Move the edit cursor to the RDYNR
-1, -1, -1} Region, temporarily change 1ts
sMCALSEQ<cr> MAP_SCENE (CALSEQ,CRNT_REG,1,1,1); Scene to one containing a
e-e2«R EDIT_REGION(NEXT_REGIDN(CRNT_REGN,-2), function-description dorument,
-1, =1, =1} then go back, switch the RPROG
«HSURST-cr> NAP_SCENE (CRNT_REGN,SUBST); Region to a text Scene for a
...STRIN.,.. EOIT_CHRR(CRNT_REG,"...ST...",08); routine under deveiopment, and
...BEGIN... EDIT_CHRR(CRNT_REG,"...BEGIN..",0); begin editing 1t. RSTRT and ROYNR
cee are still monitoring the Activity

of the running process (TRRGI).

Figure 4-7. Control of Multiple Processes (part 2)
59

/ RPROG/SUBST (PROG)

PROCEDURE SUBST (INTEGER S_SCENE, S_LINE;
STRING FRON, TO; INTEGER HOWMANY);
BEGIN
INTEGER TIMEL, LN;
FOR LN ~ S_LINE STEP | UNTIL GET_LENGTH(S_SCENE) 00
IF FINO_STRING (FROM,GET_TEXT(S_SCENE,S_LINE,1)) THEN
BEGIN

INSERT_TEXT((73
s

ROATA/ORTA dare

USER.COPILOT(...)};
BEGIN
TARGL. TEXTPROG(...);
BECIN
TARG! .EOIT(CONMANG = 17, ...)y
BEGIN
ooo; SERRCH_CNT s 145,
Lo TIREL = 13.23; ..
TARGL,SEARCH#2 (S _SCENE = 3, ..., WHAT = "THIS ONE");
» BEGIN
ooy CHR o 8; ...
SRCH_STR = “This is indeed a string”
ENO;
END;
ENO;
ENO;

RSTAT/STAT

! USER AUAITING User Input
POST RUAITING Postevent
uce STEPPED

ss TARG! BROKEK

COMMANG EXPANDED COMMENT
INTEGER TI.. EQIT_CHAR(CRNT_REG,"...IN..",0); [7JEven though the TARGI process
FOR LN .. EDIT_CHAR (CRNT_REG,"...F0..",0); has suspended at the BRERK statement,
.BEGIN. . EDIT_CHAR(CRNT_REG,"...BEGIN..",8); continue editing the SUBST Scene
(an exampie of non-preémption),

Figure 4-8. Control of Multiple Processes (part 3)
60

Figures 4-8 through 4-11 provide our last example, demonstrating non-preémption. In
' Figure 4-8 the STAT Scene indicates suspension of the TARGI process due to a BREAK
N statement, and flashes the asterisk (at one-second inervals) to attract attention. Our user,
however, has devoted a good deal of thought to the construction of the line of code which he
was inserting when the BREAK occurred. Fortunately, he is under no obligation to do
anything about the broken Target process. He finishes his line, adds another (Figure 4-10),
then (Figure 4-11) calls up the environment cf the broken TARGI process, and faces the

bad news with a clear head.

s ¢
pwm= 4

-]

61

-y

P .
; RPROG/SUBST (PROG) \
L
L
FOR LN = S_LINE STEP I UNTIL GET_LENGTH(S_SCENE) DO :
IF (CHR1«F IND_STRING (FROM,GET_TEXT(S_SCENE,S_LINE,1))) THEN
BEGIN
INSERT_TEXT(S_SCENE, S_LINE, CHR1, T0);
(8) |
&
-
3
'S
\ /
. il N
|
1]
CONNAND EXPANDED CONNENT

++ INSERT_T...

EDIT_CHAR(CRNT_REG,"...IN..",8); [8iResch a convenient place to stop Ll
editing SUPST befors handling the
breakpoint condition,

Figure 4-9. Non-Pre¢mptive Operation (part 1)
62

COMMAND
L1 g

------------------ RPROG/EDIT (PROG) ———ee--19)

BEGIN
INTEGER SCN, LN, CHR, CHl; STRING SRCH_STR;

SERRCH_PRIMITIVES;
SCN « S_SCENE; TIMEL « SYSTEH_TIME() - TINED;
SEARCH_3TR; TIMEL;
FOR LN « S_LINE STEP I UNTIL GETLENGTH(SCN)
00 BEGIN
SEARCH_CNT « SERRCH_CNT + 1;
SRCH_STR ~ GET_TEXT(SCN, LN, CHR+l, 993); CHR « 8;
IF (CHI-FIND_STRING(WHRT, SRCH_STR)) THEN BEGIN
SEARCH_SCN « SCN; SEARCH_LINE «~ LN;
SEARCH_CHRR « CHR4CHi+1; RETURN(TRUE)
END Comment recursive search;;
IF (CH1-FIND_STRING("£", SRCH_STR)) THEN
IF SEARCH(F INO_SCENE (SRCH_STRICHI+1 TO 8981),1,8,UHRAT)
THEN RETURN (TRUE)
END Comment on iine;
IBRERK (TARGL)§ PRETURN(FALSE);
N

ENO Commant Search;;
CASE COMHAND OF BEGIN

OTHER_EOQITS;
BEGIN

TIMED « SYSTEH_TIME(); SEARCH_CNT «~ 0;

RETURN (SERRCH(EQIT_SCENE, EOIT_LINE, EDIT_CHRR, S1))
END Comment search command;

STILL_DTHER _EOITS;
ENO Comment cass:
END Comment Edit;;

! USER AUAITING User Input
POST RUAITING Postevent
uce STEPPED

¢+ TARGI BROKEN

EXPANDEOD COMMENT
TO_CONTEXT(-1); 181 Finatly, return RPRDG anu RDYNR Regions to
the context of the process (TARGL) which brole,
and prepare to fix 1t. See aiso the next figurs.

Figure 4-10. Non-Pre¢mptive Operation (part 2)
63

Y esssassemsvamee=— RDATR/DATA

USER.COPILOT(...); g
BEGIN
TARGL. TEXTPROG(...)} I
BEGIN }
TARGL.EDIT(COMHAND « 17, ...)} .
BEGIN
...3 SERRCH_CNT =« 145
veey TINEL & 13.23; .00y l
TARG1.SERRCH#2(S_SCENE = 3, ..., WHAT « "THIS DNE")) .
» BEGIN
veoj CHR & 83 .00y
SRCH_STR « "This is indead & string”
END;
END; =
END;
END;
L
------------------ ROYNR/DYNR ---- 9)
- 11
USER.COPILDT --- ccvereccnn coceem-
21 31 7]
POST.POST UCP.UCP TARGI.TEXTPROG
§
EDIT
I
SEARCHAL
I
» SERRCH#2
1 1
|
L / o
\.\ // {
CONNAND EXPRANDED COMHENT
Remainder of final state, after returning
attention to the suspended process.

Figure 4-11. Non-Pre¢mptive Operation (part 3)
64

—

R e L

T

1

A I Em N e = =~

4D. ATTRIBUTE ANALYSIS OF COPILOT

We will apply the same behavior match ar.alysis to COPILOT which we applied to other
IPSs. We will indicate, for each attribute, those qualities of COPILOT which satisty the
requirements imposed by that attribute.

The User loop of COPILOT, in common with other systems, fits the .educed mode FSA
model in its basic operation. In common with DP*DA systems, the statements executed & this
loop have different interpretations when applied te different program contexts. COPILOT
can not be considered a DPDA system, however. We have replaced the nested user concept,
which DPDA systems implement by creating instances of a User procedure in some operating
environment, by a sort of "omniscient user” organization. The user is given the illusion that
he is "above the plane of his program, looking down” (or some illusion to that effect). He
can, by pointing, cause any active environment to be influenced by his actions. User
“instances” no longer need follow any particular control discipline. (In reality, thzre is hut

one User instance, whose activities invoke appropriate activities in other processes.)

Let us now perform the detailed attribute aralysis:

1) Muluple Activities. COPILOT allows the user complete control over the processes he
creates. The system atself makes copious use of the multiple processing and event
handling facilities of the language. We have described some of these system processes.
Others operate behind the scenes; they will be described in Chapter 8.

2) Non-preémption. Ironically, we have achieved non-preémptive behavior by having one
process, the User process, totally preémpt the terminal. This process is, fortunately,
designed as the mechanism for non-preémptive control of the other processes. The
terminal is always available for user commands.

3) Response time. The user may issue any meaningful command, and have it begun,
immediately after the system has accepted the previous command (limited only by the
time delay of the User loop, which 1s determined by system load, but should remain

short). This 1s the combined result of the process structure, the User process design, and
mode minimization.

65

-

4)

6)

N

8)

Minimal modes. There are no global modes in COPILOT; no special command must
be 1ssued to begin editing a function, or to begin inspecting program variables. There
1s a different command, or statement, in the single input language, for each interactive
operation in the system. This might require more different commands than systems
which provide modes, but the increase is not too great. The number of commands is
held tn check by the use of the same text-oriented and structure-oriented editing
operations on each kind of IPS data. Thus, editing the program (eg., RPROG) Region
corresponds 0 a “program edit mode”, while editing a data (RDATA) or dynamic
activation tree (RDYNA) region corresponds to some "debug mode” operations. Chapter
7 presents, in just 39 commands and special statements, a reasonably complete set of IPS
facilities, whose power may be enhanced by direct execution of normal language
statements.

Single language. Every action in COPILOT is expressible as a statement in the MISLE
language. A statement, if correct and .neaningful, will always mean the same thing,
except for the environment.dependent bindings of names.

Accessibility. By referring to supplementary data structures, COPILOT facilities can
transcend normal scope limits, gaining access in a controlled manner to names and
values of any data in the "job".

Context. All program contexts: programs, data, and execution state, can be visually
displayed, in a manner revealing their structi.re.

Non-symbolic operations. The common operations for editing and process control are
very short, manipulative in nature. We could extend our expansion algorithms to
accept non-symbolic input from devices such as a "mouse” or "graphics tablet”, again
creating MISLE statements for execution.

The chapters which follow present the COPILOT design in more detail— first the user level

descriptions, then some implementation considerations. In the final chapter, we will discuss

some of its shortcomings, and some possible extenstons.

e L e i

CHAPTER 5
THE COPILOT SYSTEM: A USER-LLVEL DESCRIPTION

In this chapter we wish to expand the introduction of Section 4.C, presenting the COPILOT
experimental design in some detail. Our goal is not to write a user's manual, but to cover all
the major aspects of the system, to give the reader a general understanding of its capabilities,

and a feeling for its philosophy.

5A. BASIC SYSTEM STRUCTURE TERMINOLOGY

Our discussion of COPILOT begins with the structures we have developed for the display
of information. These structures, while they need not stiongly affect such things as the
programming language design— the control and data structures it supports— do determine

how the user views his programs, and what role he can play in their operations.

We will show that the Scere types defined in COPILOT constitute an adequate external
model for the Information Structure of most block-structured languages and that, when
linked to the operant structures underlying them, these Scenes provide all necessary context

for viewing and controlling program operation.

We begin the discussion with a definition of the COPILOT display terminology.

{
{
i
i
{
i
1
3
|
1
1
|
i

Table 5-1. Display Terminology

SCREEN A physical display device, also known as a “display”.

REGION A contiguous, named group of lines on a Screen, assigned by user or program to
a specific Screen location.

SCENE A logically related, ordered set of text lines — a "page” from a user program, for
instance. Each Scene also possesses a Scene Type to clarify its use. A Scene may
be part of a program, of 2 data specification, or any other textually representable
entity.

WINDOW The contiguous set of lines from a Scene, visible in the Region to which the
Scene is assigned (mapped).

5.A1 Screens

In Section 4.A2 we statec that we would support multiple screens. A Screen, or Display, 1s a
device capable of presenting continuously several lines of text. The Fardware and software
supporting each display must allow programs to control completely the data displayed on the
screen. Updating must be fast enough that no appreciable delay is encountered while
changing part or all of the data on the Screen. In addition, it must be possible to show
several distinct indicators, or cursors, without disturbing the data. In COPILOT, the
Screens assigned to a user are assigned permanent numbers during installation— naming
facilities at the screen level are not very important.

5.A2 Regions

Given enough Screens, a COPILOT user could devote one to each independent data Scene
which he or the system has created. [However, it is rot usually possible to sausfy the
voracious appetites of COPILOT processes for display area Thus there 1s a need for
facihities which will allocate sections of the available Screens to these disparate uses

A Region 1s a named area on some Screen. Region names and ranges may be assigned by
programs or by the user. the iniual system configuration features a few Regions whose Scenes
display the initial system context. The subsequent creation and mapping of Region to Screen
is an infrequent operation Typically, the user does it but once, at the beginning of a session,
to establish an augmented configuration 1o suit his needs and resources

68

A Region 15 usually named, created, and used for a specific kind of Scene; iIf one wishes to
use the same Screen area for muluple purposes, he assigns multiple Regions to that area. In
the current system. no two Regions whose areas overlap may have Scenes mapped into them
(be visible) simultaneously. Such a facility would require a priority scheme to resolve

conflicts

We will treat Regions and their relationship to Scenes in Section 5H, after a detailed

consideration of Scenes and what we put into them

5.A3 Scenes

We have used the term “Scene” loosely in the preceding paragraphs to describe the collections
of hnes displayed in a Region In cur formal defimition, such a collection of hnes 15 a
“Window" of some Scene If the Scene has fewer lines than its Region, enough empty lines
will be inserted to fill the Window The archetypical example 15 the Scene used for storing
and displaying program text Program Scenes resemble the user-defined “pages” which often
segment program text files into logical groups A program Scene might be just one page from
the fle. although we intend to suggest an orgar.ization of programs into Scenes which 15 more
intuitively structured for interactive operation We have avoided use of the term "page” to

avoid confusion with the memory “pages” of some modern computing systems.

5.A4 Scene Types

Every Scene has the same format a set of text hnes As we have suggested, though, Scenes
are put to various uses Some Scenes correspond to structures (such as “ompiled code) at other
levels, or contain data which system processes need to read The user may also define Scenes
whick require special treatment We associate with each Scene a Scene type. a code

identifying 1ts uses

Additional arrributes for a Scene include 1ts name. a string optionally assigned 0 1t when it
18 created, its length (the number of lines). and the (urren: editing position within this Scene
The edit cursor ("7 character) visibly incicates this point whenever the Scene is selected for

terminal-controlled editing operations

Other attributes could be used to place restrictions on the use of Scenes These attributes

69

would be similar to the "Capabilities” of [32] and would specify for each process whether,

for instance, that proces: was permitted to read, modify, or (for Program Scenes) execute the

Scene, who 1ts owner was (for shared Scenes), etc.

5B CONTEXT SCENES AS EXTERNAL INFORMATION STRUCTURES

Before we consider the Scene types which we have provided in COPILOT, we should say
just what 1t 1s we want these Scenes to accomphsh: to supply the user with that contextual
information needed both to observe the instantaneous state of a computation 1n a coherent
manner, and to predict and influence 1ts future actions. We will refer collectively to these

Scene types as Context Scenes.

5.B1 Information Structure Models

In [59), Wegner formalized the need for a way to describe program execution context with
his Information Structure Models. He categorized programming languages by the data
structures required to specify their Information Structures within a processor. These
structures include algorithms, data, and their control mechanisms. A set of Information
Structures, I, time.ordered “snapshots” of program and data configurations during a
computation; an initial configuration Ig from I, and a set of transformations (interpretation
rules), F, taking configurations I to their successors— constitutes an Information Structure
Model of the computation, 1n a given programming language and sys'em. In the Context
Scenes. we will be concerned with the external representation of elements from I. For most

programming languages, Wegner shows that one can further factor the Information

Structures of I into the following components:

1) The Program Component: a representation of the algorithm.

2) The Data Component ob jects allocated and manipulated by the algorithm.

3) The Control Component indicators of currently active program steps and data
environments within each active process.

5.B2 The Contour Model

Johnston, [27], has developed an Information Structure Model, the Contour Model, for

70

AT PN

P

e

block-structured languages. This model has been shown adequate for representing the
information structures of Algol60, Algol68 [47), and Oregano, (4], which was designed
around 1it. The Contour Model appears to extend to the complex naming structures of PL/I
and Simula, as well, although 1t does not support the dynamically inherited naming scopes of
Lisp, LCC, and their 1lk.

Figure 51 15 an example of a “snapshot” from an Algol60 program, expressed in the
Contour Model. The Program Component 1s called the algorithn, the Data Compon: nt the
record of activation. In the latter the nested Contours define the lexically nested access
environment, while the dynamic (control, eg. caller and callee) nesting 1s shown by
connecting arrows. The Control Component consists of one or more processors, each
defining the locus of control of an independent process, each represented 1n the model by the
IP (instruction point), and EP (environment point) arrows emanating from the "n" graphic

which depicts the processor.

n

| bl: BEGIN

Figure 5-1. The Contour Model Represen:ation for an Algorithm

REAL o,b,x;
2 PROCEDURE P(x,y); :
REAL 1x,y; ¢
3 bp: BEGIN .
REAL c;
4 P(..,...)
5-6 END;
7 b2:BEGIN
REAL b,c;
8 P{a,b)
9 END
W00 gy , BI Bl
/a) (a | 35.8)
b b |
X x | 146.35
2 P p— - ’ ”
x BP:3 BP P P
—— -4 x| 2% x]24
! l c] | 048] y
: ' 2y 18] gp | [2LIE] g
4 LN N] %> ‘ —t
RN =R G
) J7-05 -
6 [GOTO 2
® ,
i B2 B2
b | ‘v| 88
c . —mc! 1.4
e * e @
CALL P(a,b)
s _J __ Y,

7

5.B3 The COPILOT Context Scenes

By viewing a snapshot, I, in a Contour Model representation, and knowing how the
interpreter, F, operates, one can predict the content: of snapshot I;,;, to whatever level of

detail one chooses. This is precisely the kind of condition we want to create with our
Context Scenes. Although we have not used the Contour Model notation directly, we will
show the (potential) functional equivalence between the Contour Model and our Context

Scenes. This will deronstrate the adequacy of the Context Scenes as an external

Information Structure representation, for MISLE and a variety of other languages. To

handle Lisp-like structures would require additional development.

5.B4 The Snapshot Requ cement

We are imited by current hardware in the amount of concurrence we can achieve. Because
much of what we display (the name and value of a vaniable, for instance) must be converted
from the internal forms required for efficient operation, and because of the expense of this
conversion, 1t 15 impossible to record each change visibly as soon as it occurs. Text Scenes
are made to agree with changes in the ultimate underlying structures, not instantaneously, but

at frequent and adequate intervals, in a manner revealed in Section 6.C.

In order to preserve the "snapshot” quality of the Contour Model in our system, we will
impose the following requirement: all visible context Scenes must be updated simultaneously,
each time the display 1s changed. Therefore, at any instant, all visible system information is
a correct 1epresentation of some subset of the system state at a single previous instant. Thus,
the user sees 1s a single coherent “snapshot” of his system, not an album of individual

pictures whose time relationship is unclear.

5.B5 COPILOT Context Scene Types
We can now present desctiptions of the Context Scene types. In each we will follow

approximately the same foimat

a) Which component(s) of the Information Structure it exhibits
b) Details of the information content of this type (syntax, semantics).
¢) How the information is organized into Scenes.

73

There are only four different Scene types predefined in COPILOT: program, data, dynamic

structure, and status Scenes. We will deal with each in turn.

5C. PROGRAM SCENES — THE PROGRAM COMPONENT

We have designed a programming language, MISLE, in which the user both describes his
algorithms and contrels their operacion, by manipulating their representations as program
Scenes. Although these operators require substantial underlying structure, none is visible to
the user: he see: only the text of his programs, stored in Scenes. We have chosen this
standard textual representation over other alternatives (eg., Johnston's representation of
programs as flowcharts nested in Contour Templates) for a variety of reasons, among which

are:

1) The notation is more compact.

2) The control structure is more obvious (with a slight loss in the clarity of the data
structure).

3) Editing operations are easier.

4) The text format 1s mote easily stored, transmitted and printed.

5.C1 The MISLE Language

MISLE is an easily-implemented subset of the language SAIL [52] SAIL is derived from
Algol60 [46), with some syntactic modifications to suit the designers. Extensions were
originally made to this base to include a variable length character string facility, and to
include a variant of the associative processing language LEAP [18). More recently, in
response to an increased need for sophisticated control and data structures in Artificial
Intelligence research, a major revision was developed (19) The addition mo:t relevant to
our needs is a comprehensive set of facilities providing multiple processes in the style of
Algol 68 [61]

The current COPILOT implementation is written predominantly using SAIL; our preferred
language would be a SAIL superset. However, we have yielded in this dissertation to the
need for a language which i1s simple to implement, and to understand. Therefore, MISLE 1s
a limited SAIL subset, adding to the basic Algol-like constructs just enough to support the

IPS primitives which the user will need: process control primitives, text strings, etc.

74

H
|
1
M

o ——
i
e s

,«.‘4_.

5.C2 The Basic Features of MISLE

What follows is the syntax (and a brief semantic discussion) of the more or less standard
SAIL-like aspects of MISLE. The reader who is already familiar with this sort of language
would do well to skim this section and proceed with Section 5.C5, defining special additions
to the language for interactive uses. Refer to Appendix A for a description of our syntax
notation.

<program> := <block>

<block> s <head> <tail>

<head> := BEGIN <decl list>

<tail> := <statement> { ; <statement> }« END

s W N -

o

<decl_list> = <decl> {decl}:
6 <decl> := <type> <idlist> ; | <pdec> |
<algol-like array declarations>
7 <idlist> == <id> {, <id> }=
8 <type> := <atype> | LABEL
9 <atype> := INTEGER | STRING
10 <pdec> == <untyped pdec> | <atype> <untyped_pdec>
11 <untyped_pdec> :=
PROCEDURE <id> ({ <param_list> }) ; <statement>
12 <param_list> := <param> {; <param> }:
13 <param> := <atype> <id>

14 <statement> := <block> |<compound_statement> |
<conditional> | <assignment: | <jump> |
<for> | <while> | « | <pcall> |
<id> : <statement> | <pi..ess control statement>

15 <compound statement> := BEGIN <tail>

16 <conditional> ::= IF <Boolean_expr>

THEN <statement> { ELSE <statement> }

17 <assignment> := <id> « <expression>

18 <jump> := GO «id>

19 <for> := FOR <forhead> <statement>

20 <forliead> := <id> « <arith expression> STEP
<arith_expression> UNTIL <arith_exg “ssion>

7%

e el g

22

23

24

25

26
27
28
29

30

3
32
33
34
35

36

37

<while> := WHILE <Boolean _expr> DO <statement>
<case> 1= CASE
<arith_expression> OF <compound _statement>

<pcall> u= <id> ({ <expr_list> })

<process control statement> := ACTIVATE (<process_id>) |
TERMINATE (<process_id>) |
SUSPEND (<process_id>) |
SET PRIORITY (<process_id> , <expression>)

<process 1d> ::= <arith expression>

<expr list> = <expression> { , <expression> b
<Boolean_expr - := <disjunct> { V <disjunct> }»
<disjunct> z~ <relation> { A <relation> }
<relation> := <a-ith_expression>
{ <relup> <arith_expression> }»
<expression> := <arith_expression>
{ & <arith_expression> }u
<arith_expression> := { <pm> } <term> { <pm> <term> Jn
<pm> = s | -
<term> u= <primary> { <td> <primary> }»
<td> := |/ | MOD
<primary> z= <id> { [<arith_expression>
TO «<arith_expression> 1} |
<<all> | <constant> | (<expression>) |
<process control_primary>

<algol-like array element specifications>

<process_control_primary> :=
SPROU . (<pcall> <father> <stacksize>,<priority>) |
EV_TYPE () | CAUSE (<evtype> , <value>) |
EV_WAIT (<evtype>) | EV_GET (<evtype>) |
AR _EV WAIT (<evtypearray>) | AR_.EV_GET ..

<evtype> := <arith_expression>

<father> = <process id>

- hdbadedes |- ——ar el o B bl i

39 <stacksize> := <arith_expression>
40 <priority> := <arith_expression>

41 <constant> := <string_constant> | <integer_constant>

42 <comment > := COMMENT <algol-like comment, ending in " >

5.C3 Semantics of Extensions

MISLE 1s for the most part a slightly modified subset of Algolé0 with the SAIL String data
type added. Its only data types are scalars and arrays of integer and string values, denoted
by identifiers, constants, and expressions. Only explicit conversions (string to integer, integer
to string) are provided. The operators +, -, % /, and MOD are available for arithmetic
operations; normal relationals are available for Booleans. Strings may be concatenated using
the operator &. S[n FOR m] yields the m-character substring of S, beginning with the nth
character. Parameters are passed to procedures by value only. Control facilities include (in
addition to proceduits), GO TO, IF, FOR, WHILE, and CASE (alternative selection)
statements. A syntactic modification places both the naming and type descriptions of

procedure parameters within the (parenthesized) parameter list, as in Algol W [3].

5.C4 Processes

The process-manipulation primitives of the unenhanced language allow creation, deletion,
suspension and activation of processes (see (4] as a reference to the kind of “cactus stack”
process strictu.e we employ) We mean by "unenhanced” that these do not rely on the

facilities of the IPS for thewr operation.

Processes are assigned execution priorities when they are created. Whenever a running
process suspends, or specifically requests 1t, the system scheduler selects a new process to run,

choosing the highest-priority process which 1s READY to run (see Section 5.F).

Events are interrupt and process-communication fechanisms. A process may cause an event
of a chosen event type, and may specify a value to be associated with the event. When the
scheduler next runs (the running process suspends), it will ready any processes which are
waiting for an event of this type, returning the associated value as the result of the function

which does the waiting.

77

For each occurrence of an external interrupt (I/O, timer, etc.) basic system routines simulate a
very high priority process which causes an appropriate event and forces rescheduling as soon
as possible. Processes handle interrupts by waiting for, or testing (polling) for, events of the
corresponding type. This approach to interrupts, as opposed to more standard interrupt
rnechanisms like those in {47) ("unexpected” procedure calls), is supported by Wirth [64).
The result is a consistent, process-oriented method for handling all asynchronous activity.

Table 5-2 provides the meanings of the basic process-control primitives. In Section 7.C7

we will describe additional process control functions, intended for interactive use.

Table 5-2. COPILOT Process Contro! Primitives

Sprout(...) Creates a new, suspended process, with given stack size and priority.

An 1nstance of the specified procedure is readied within the new process.
Sprout returns a unique integer process identifier, or pid.

Activate(pid) sets the state of the process pid to READY. It will be set RUNNING as
soon as possible, based on its priority and the availability of resources.

Suspend(pid) Sets the state of the process to SUSPENDED. It will not run again
until some other process Activates it.

Terminate(pid) Destroys the process pid, and any subprocesses.

Set_priority(..) Changes the execution priority of a process.

Cause(..) creates an event of given type and value, READIES any processes

awaiung events of that type, and forces reschedu ing.

Ev_wait(..) ylelds the value of an event of given type. It causes the process caliing
it to wait (SUSPEND), if necessary, until such an event is available.
The event 1s then forgotten by the system.

Ev_get(.) never waits. [t yields 0 if no such event has been caused (and still
exists). Otherwise, 1t is the same as Ev_wait.

Ev type() creates a new event type.

[S ’l

e

LR

Ar_ev wait(..)

Ar e get(.)

actual event.

as Ar_ev wait.

5.C5 Special Features

We have added the following additional constructs to the language in order tc make some of
the interactive facilities more convenient. The additions include variable-display (debugging)

statements, breakpointing statements, and Scene linking constructs. The syntax follows:

- W N

o

9

<statement> :s <Scene link> ; <statement>
<declaration> == <Scene link> ; <declaration>
<Scene link> = #» <Scene id>

<Scene id> ::= <id>

<statement> ;= <show>

<show> := <expression>

<statement> = <t2mporary statement> <statement> |
<statement> <temporary Statement> |
<affect> <class>

<temporary statement> := '{ {<class> :} {<switch> !}
<statement> {; <statements}: '}

<affect> == TURN ON | TURN OFF | DELETE

10 <class> == <id>

<switch> .= ON | OFF

12 <statement> := BREAK (<process 1d>) |

ARR BREAK (<process_id array>)

waits for one of a set of event types, specified in an array. The result is
the type of event which was actually caused. Ar_ev_wait does not
delete the event; hence, an Ev _get may subsequently be used to fetch the

never waits. [t yields 0 if no such event exists. Otherwise, it is the same

Each of these additions depends heavily o1 uspect: of the IPS which remain to be described.

We will delay explanation of their semantics until the descriptions are complete.

For an example of a MISLE program, refer to the PROG Scene of Figure 4.1, or one of

those which follow it.

5.C6 Program Scene Organization
Traditional program source text organization is straightforward: a deck of cards, a magnetic
tape, or a disc file containing the lines of the program. In the latter case, perhaps the file is

linearly segmented into logical pages, mostly for display purposes.

One notable exception is the file system for NLS [15], developed over the !isc decade at
SRI's Augmentation Research Center. Very briefly, the purpose of this display-based system
is to provide a complete interactive environment for the user, to dispense entirely with paper
and pencil, yielding a corresponding increase (augmentation) in intellectual power. The NLS
work has proved a major influence in this research. We hope to retain something of this
power in COPILOT, while extending its domain to direct interaction with user algorithms.

Files (not only program files) are not organized in simple linear fashiun in NLS. Instead,

they are hierarchical, resembling outlines; the NLS user can choose to view only the level of
detail which suits him: just the major topics, the major and first subtopics, or the entire
structure. He can also place hidden or visible links at arbitrary points in his files, providing
a path to related material in the same or other files. NLS makes it easy to follow these links,

to save previous views, and generally to navigate fruitfully about a web of cross-references.

We cannot hope to do the NLS system justice in so short an introduction, nor have we space

to describe other text-manipulation systems which support structured file organization. We

can suggest in addition the references [60), [24), and (42])

MISLE programs, being block-structured, are inherently hierarchical We envision an
implementation of COPILOT which would allow the user NLS-like control of the degree of
detail (depth of nesting) of the displayed program. For instance, one could view only the top
level statements of a block, with substatements merely indicated. Hansen used something like
this 1n his thesis [24). The BBN-Lisp editor, (53], because of the need to be concise,

80

uses a similar structure-compression technique in its teletype-oriented system. Our system

contains many hierarchical structures, and techniques like these would enharce any of them.

At present, however, our use of hierarchical design is explicit. Instead of fragmenting a
program into consecutive linear Scenes, the user can include Scene link constructs to achieve
a hierarchical segmentation. Figure 5-2 gives a simple example. The system views the
program as if it were a procedure, expressed in one Scene, containing the data of Figure
5.2.c. it treats a Scene link as a sort of "macro” call. The user views it as a procedure
.ontaining a suppressed subprocedure (Figures 5-2.2 and 5-2b). The system prcvides
complete facilities for “following the links", both forward and backward, when the user
wishes more or less detail. When a Scene link occurs as the last line of a Scene, simulating

linear connections, special treatment avoids unnecessary nesting.

Our personal experience (supported by Mills in [42]) is that it is useful to segment a
program so that each Scene is fairly small, each representing a logizal section of the program

and of the control structure of the algorithm. The system will nevertheless support Scenes of

arbitrary size.

81

s e o o |

Scene oStl;
PROCEDURE TI(INTEGER DUM);
BEGIN
oSRNP ;
INTEGER JK; STRING §;
FOR J«1 STEP | UNTIL 100 DO BEGIN
Ke]J+3 K
WHILE K<J+10 DO OUTPUT(RNP(K))
END
END

a) Containing Scene

Scene sSrnp;
STRING PROCEDURE RNP(INTEGER 1);
IF 1=0 THEN RETURN(™) ELSE
RETURN(RNP(1/10)PUTCH(I MOD 10+48));

b) Contained Scene

PROCEDURE TI(INTEGER DUM);
BEGIN
STRING PROCEDURE RNP(INTEGER 1),
IF 1.0 THEN RETURN(™) ELSE
RETURN(RNP(1/10)&PUTCH(l MOD 10+48));
INTEGER J.K;
FOR J«1 STEP 1 UNTIL 100 DO BEGIN
KeJ+3 K;
WHILE K<J+10 DO OUTPUT(RNP(K))
END
END

¢) Apparent Program

Figure 5-2. PROG Scene Linkage
82

i el Gl Bd

S

[]
4

ol

3

]
4

W i

e

. T —

| = e &= =

| omenuny

=4 = 0

:'d “

5.C7 The Instruction Point Portion of the Control Component

As we have indicated, we have distributed our representation of the Control Component
among the Context Scenes. In Program Scenes we indicate the IP (for a selected process) by
a special contex* cursor, represented by the "»" character. This context cursor precedes the
text for a statement in the selected process. Which of the active IPs is selected for display
depends on an indicator in the DYNA Scene (see Section 5.EI). Any terminal commands

which require implicit program location data obtain it from this selected IP.

The context cursor is the visible represeniation of the active statement within the selected
process. No function used to retrieve program Scene data will ever yield a string containing

the context cursor. See Chapter 7 for functions which yieid its location.

5D. DATA SCENES - THE STATIC DATA CUMPONENT

Because algorithmic languages like MISLE were designed before we designed COPILOT, we
had little trouble deciding a representation for the Program Component in the program
Scenes. This is not true of the Data Component, where few attempts have been made to

create formal external representations for the data environments (for any language).

Again, a logical candidate might be the Contour Model -epresentation; again we have
decided against using it directly. In addition to the reasons we gave in Section 5.C, we feel
that use of Contours to display the Recora of Execution would create Scenes of confusing
complexity. We have instead developed a more linguistic method which we can prove
equivalent in facilities to the Contour Model, thus adequate for Data Component

representation.

Qur solution requires two new constructs:

1) A data specification notation, or Data Language *), intimately related to the MISLE
language, for defining data values in their static (lexical) contexts (the static Data
Component)

2) A tree notation for exhibiting the dynamic (control) relationships of the Record of
Execution.

(1) Some object to this term because the "language” is not algorithmic (no verbs). It is a
language formally, however. Read "specification” for ™anguage” throughout, if you wish.
83

o

We begin with the Data Language.

5.D] Data Language Syntax
. <data layout> := <data block>
<data block> := BEGIN «data tail>
<data tail> == <data spec> {; <data spec> }» END
<data spec> := <equation> | <data block> | <pcall spec>
<pcall spec> = <pcall descr> ; <da.2 block>
<equa’ion> «= <id> = <constant> | ..
<pcall descr> = <instance> ({ <equation list> })
<instance> zw { <process name> . }
<procedure id> {s <nesting level> }

<equation list> := <equation> {, <equation> }»

5.D2 Semantics, Pragmatics

The Data Language is a parasitic language. The syntax hints at this in its resemblance to

MISLE: the procedure and block structure productions are nearly identical, the equations of

the Data Language correspond closely to MISLE declarations. We require that the
dependence be even more pronounced, however. A <data layout> is meaningless without
reference to a section of the MISLE program to which it is linked (we cousider this linkage
in more detail below). One <pcall spec> or <data block> may exist at any instant for each

instance of a procedure or block activation.

There are two kinds of information in a <data layout>. The first, provided by equations,
comprises the names and values of selected variables (and expressions) at some instant. The
constant in an equation must agree in data type with the type of the linked variable whose

name appears in the equation, and whose value it represents. We will say that an identifier

is marked if it has been selected by the operations of Section 7.D1 for display in data

Scenes.
The second is structural, provided by the block and procedure structure (whose interpretation
is transparent), and by ellipses (..). The ellipsis is an optional device which informs the

viewer that there are variables in the Contour whose values do not appear in the Scene.

84

e S R L T TS ——

The position of the ellipsis (or ellipses) in a <data block> or <equation list> corresponds to
I the position of the omitted names in the declaration list of the linked algorithm. Figure 4-2
contains a Data Layout for one of the states enccuiitered by the program in the same figure

during its execution.

5.D3 Data Scene Organization
The second COPILOT Context Scene type is the data Scene. Each data Scene contains one
data layout which is linked (}) to a procedure in some program Scene. In COPILOT, a

sir.gle data Scene, DS, can contain text level representations for the data from at most one

| instance of some procedure, p, and from those forming its lexical ancestors. This means any

older recursive instances of this same procedure, any instances of other procedures in the

l dynamic ancestry of p (and in other process branches) whose variables are not accessible to p,
can have no representation in DS. It is possible, however, to form other data Scenes at the

same time which do represent these hidden environments.

| 3 The user, or more commonly che system, can create a legal data Scene as follows:

1) Choose a procedure, P=P, from some Scene, and some instance of that procedure,

f p=po Begin with an empty data Scene.
(]
. 2) Record in a <pcall spec> the values of marked local variables and actual parameter
{ | values (with their formal names) from p, following the pattern established by P.
y 3) Obtain the immediate lexical parent, P, of P, and the corresponding instance, p', from
[the static environment of p. Quit if there is none.

4 Embed the lines of the <pcall spec> created in step 2 in a <pcall spec> formed by
'r repeating steps 2 through 4, substituting P’ for P, p’ for p. An embedded <pcall spec: is
. inserted just after the other declarations in the <data block> which corresponds to its

point of declaration.

[The hinkage of pq to Pg defines completely the linkage of the data Scene to the program
- Scene.
o

We shou!d emphasize that we have made many arbitrary decisions in this design. We
it

(1) This is the antecedent link of Johnston's model; its exphcit existence is usually omitted in his

L

examples, but would have to be present in any implementation.

85

considered several other algorithms for generating data Scenes. Some of these allowed
multiple instances of the same procedure, thereby including much more dynamic context
directly. Perhaps one of these methods (or one which d.d not occur to us) would be a
superior cne. Surely the designer of a COPILOT -like IPS for a different type of language
should reconsider the issue. Our final choice is based mainly on a desire for clarity. The

dynamic Scenes of the next section help cure many of the inadequacies of the data Scenes.

Section 5H1 will depic: data Scenes in action. There we shall show how these Scenes are
created and used, emphasizing tne most common situations.

5.D4 The Data Language as an Input Facility
Using Contour Model terminology, the Program Component of a Snapshot, Ij, of a

computadion (k)is externally represented in COPILCT by program Scenes. In some sense,
these Scenes also form a complete external representation of the initial state, Iy, since the

initial Record of Execution is empty; they cannot specify any subsequent Snapshot, Ij' j=0.

Thus, although the language can specify a computation via an algorithm, it cannot directly
express intermediate states of that computation. R. Floyd has pointed out that it would be
useful to have linguistic facilities for constructing these intermediate states (). This would

make it possible to:

1) Directly create a test environment for testing a routine in an incomplete program which
does not yet include code for supplying that environment.

2) Directly modify an environment, perhaps to agree with a modified algorithm, perhaps
preparatory to altering the instruction point (IP) of a process operating in that
environment (in complicated cases this might be preferable to what the system could do
automatically).

3) Save and restore intermediate computation f*aies in human-readable form. (For small
programs, this “core dump” technique would allow one to save computations over
conscie sessions. In Section 8.B1 we will examine more efficient methods.)

4) View Snapshots of a computation in a reasonable form.

(x) The collection of snapshots defining the total operation of one program "run"

(1) Personal communication, October 1972,
86

We have not seen this kind of facility in an IPS. Comment (4) above should reveal our
approach to providing it. We already possess a linguistic facility, the Data Language, for
disp'aying intermediate computatic 1 states. By selecting a data Scene for editing, then using
standard text-editing operatior.; to modify it, the user can even indicate changes he would
like to make. To turn this into a full data-specification facility, it is only necessary to
convince the system to convert these changes into corresponding changes in the actual
underlying data structures. We have done this in the COPILOT design. Similar user
changes will be shown useful in dynamic Scenes, as well (see Section 9.C1). This achieves a
very pleasing symmetry within the Context Scenes: all constructs are useful for two-way

communications between the user and the system.

The editing operations required to accomplish text changes are presented in Chapter 7,

including special convenience commands particular to data Scenes.

5.D5 The Environment Point Portion of the Control Component

We use here a development paralleling that for program Scenes. There is an Environment
Point (EP) in the Control Component for each active Process, defining its access
environmert. Information in the dynamic Scenes will indicate all the active Environment

Points.

Again, the user (or orie of his programs) may select a “distinguished” EP, which will be
displayed as a context cursor ("») if the environment it defines appears in a visible data
Scene. All terminal commands which require implicit environmental specification will obtain

it from this cursor.

5E. DYNAMIC SCENES — THE DYNAMIC DATA COMPONENT

Data Scenes can show any or every element of the Data Component, and the static (lexical)
relationships between activations of <blocks> and <procedures>. They do not exhibit the
dynamic connections (eg., for procedure instance p, which procedure instance called it, or
which created (-prouted) it; to which instance it will return). The purpose of the dynamic

Scene is to provide this information.

87

We are tempted to suggest another "language” here, with its own related syntax; we have

decided instead to develop a mare graphical representation for the dynamic "cactus-stack” i
structure of MISLE programs. This dynamic structure tree does share constructs in common o
with Data Language elements, however, and this linkage is important to our powerful il
context-roaming operations (Section 5.HI). o
There is but one dynamic Scene in a COPILOT environment, containing the single dynamic !

structure tree. Figure 4-2 is an example of the dynamic Scene. Its structure is quite simple:
Each node (terminal or non-terminal) of the tree is an <instance>, as defined in the Data qi
Language grammar in Section 5D1. The root node ("USER.COPILOT#I") provides the -
base environment of the entire computation, or "job", including IPS facilities. Instances of

active procedures in a process appear (in order of call) below each other in the same column. .
The root nodes of subordinate processes are placed in adjacent columns as shown, then P
connected by horizontal line segments to the processes which own them (3). The terminal

nodes of the dynamic tree define the set of active Environment Points.

5.E1 The Context Point $
At any one time, there can be but one EP visible (as a context cursor) in a data Scene, and ‘i
bu* one IP context cursor in a program Scene. In fact, given a computation in progress, and -
a particular EP, the corresponding IP is completely determined. Thus to select an (IP, EP) _J {

pair for display as context cursors, one need specify only the EP.

We accomplish this manual selection of e. ecution environment using an additiona!l indicator,

which we will call the Context Point (CP). The CP is represented by a context cursor which ']
selects an instance in the dynamic Scene. We have functions for moving the Context Point - 3
within the dynamic tree, and for generating data and program Scenes, with their context o [
cursors, to exhibit the environments which the CP selects. We will describe these functions ..(
in Chapter 7.

i
5.E2 Adequacy of Scenes as External Information Structures]
In Section 5B3 we announced our intention to show a functional equivalsnce between the “

oy
...................................... el

{$) For simplicity, MISLE follows the retention rules implicit in Algol60, and explicit in Algol68: A
process must be extarminated if its owner ceases to exist.

88 A

- PR
L

U

Context Scenes and Johnston's Contour Model. This is important, because it expands the

power of our formulation to all the language types amenable to the Contour analysis.

Now that each of our Scene types has been developed, the demonstration of this equivalence
18 quite simple: one need only select all variables for display, then create enough data Scenes
to contain each instance of each active procedure and block at least once. Then for each
relationship or value revealed in a Contour Snapshot one can identify constructs from one or
more Context Scenes which reveal the same relationship or value (a formal proof would

simply enumerate these correspundences).

5F. STAT SCENE — PROCESS STATUS

We have consistently omitted one important quantity from our Control Component
descriptions: the execution state of each process. A user viewing a snapshot composed only of
program, data, and dynamic Scenes could not predict from it the appearance of the next,

since he does not know which processes are running, which suspended.

We have theiefore added one last Context Scene type: the status Scene. Figure 4-5 contains
an example of one. It indicates for each process the execution status of that process:
RUNNING, READY, or SUSPENDED. In a single processor system there can be but one
RUNNING process; those lacking only the processor to run them are instead termed

READY. For most purposes the two states can be considered equivalent.

We have further distinguished suspended processes in the statu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>